BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28634953)

  • 1. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells.
    Occhetta P; Visone R; Rasponi M
    Methods Mol Biol; 2017; 1612():303-323. PubMed ID: 28634953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes.
    Occhetta P; Centola M; Tonnarelli B; Redaelli A; Martin I; Rasponi M
    Sci Rep; 2015 May; 5():10288. PubMed ID: 25983217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding the winning combination. Combinatorial screening of three dimensional niches to guide stem cell osteogenesis.
    Memic A; Khademhosseini A
    Organogenesis; 2014; 10(3):299-302. PubMed ID: 25482315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.
    Sart S; Agathos SN; Li Y; Ma T
    Biotechnol J; 2016 Jan; 11(1):43-57. PubMed ID: 26696441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfusion culture of mammalian cells in a microfluidic channel with a built-in pillar array.
    Zhang C
    Methods Mol Biol; 2012; 853():83-94. PubMed ID: 22323142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.
    Vickerman V; Blundo J; Chung S; Kamm R
    Lab Chip; 2008 Sep; 8(9):1468-77. PubMed ID: 18818801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput synchronization of mammalian cell cultures by spiral microfluidics.
    Lee WC; Bhagat AA; Lim CT
    Methods Mol Biol; 2014; 1104():3-13. PubMed ID: 24297405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.
    Yoshimitsu R; Hattori K; Sugiura S; Kondo Y; Yamada R; Tachikawa S; Satoh T; Kurisaki A; Ohnuma K; Asashima M; Kanamori T
    Biotechnol Bioeng; 2014 May; 111(5):937-47. PubMed ID: 24222619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.
    Futrega K; Atkinson K; Lott WB; Doran MR
    Tissue Eng Part C Methods; 2017 Apr; 23(4):200-218. PubMed ID: 28406754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometric control of live cell mixing to enable fluidically-encoded co-culture models in perfused microbioreactor arrays.
    Occhetta P; Glass N; Otte E; Rasponi M; Cooper-White JJ
    Integr Biol (Camb); 2016 Feb; 8(2):194-204. PubMed ID: 26837282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.
    Chen YC; Yoon E
    Methods Mol Biol; 2017; 1612():281-291. PubMed ID: 28634951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic-Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform.
    Park W; Jang S; Kim TW; Bae J; Oh TI; Lee E
    Macromol Biosci; 2019 Aug; 19(8):e1900136. PubMed ID: 31268233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.