These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 28635039)
1. Rational Design of Na(Li Kim D; Cho M; Cho K Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28635039 [TBL] [Abstract][Full Text] [Related]
2. A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li Zuo Y; Li B; Jiang N; Chu W; Zhang H; Zou R; Xia D Adv Mater; 2018 Apr; 30(16):e1707255. PubMed ID: 29532965 [TBL] [Abstract][Full Text] [Related]
3. Determining Factors in Triggering Hysteretic Oxygen Capacities in Lithium-Excess Sodium Layered Oxides. Park S; Lee J; Kim H; Chioi G; Koo S; Lee J; Cho M; Kim D ACS Appl Mater Interfaces; 2022 May; 14(17):19515-19523. PubMed ID: 35452216 [TBL] [Abstract][Full Text] [Related]
4. Uncovering the Structural Evolution in Na-Excess Layered Cathodes for Rational Use of an Anionic Redox Reaction. Choi G; Lee J; Kim D ACS Appl Mater Interfaces; 2020 Jul; 12(26):29203-29211. PubMed ID: 32491823 [TBL] [Abstract][Full Text] [Related]
5. Enabling Anionic Redox Stability of P2-Na Huang Y; Zhu Y; Nie A; Fu H; Hu Z; Sun X; Haw SC; Chen JM; Chan TS; Yu S; Sun G; Jiang G; Han J; Luo W; Huang Y Adv Mater; 2022 Mar; 34(9):e2105404. PubMed ID: 34961966 [TBL] [Abstract][Full Text] [Related]
6. Realizing High-Performance Cathodes with Cationic and Anionic Redox Reactions in High-Sodium-Content P2-Type Oxides for Sodium-Ion Batteries. Liu Q; Zheng W; Liu G; Hu J; Zhang X; Han N; Wang Z; Luo J; Fransaer J; Lu Z ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36757842 [TBL] [Abstract][Full Text] [Related]
7. Structural Instability Driven by Li/Na Competition in Na(Li Perez AJ; Rousse G; Tarascon JM Inorg Chem; 2019 Nov; 58(22):15644-15651. PubMed ID: 31697483 [TBL] [Abstract][Full Text] [Related]
8. Regulating Cation Interactions for Zero-Strain and High-Voltage P2-type Na Zou P; Yao L; Wang C; Lee SJ; Li T; Xin HL Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202304628. PubMed ID: 37139583 [TBL] [Abstract][Full Text] [Related]
9. A Cobalt-Free Li(Li Cheng X; Wei H; Hao W; Li H; Si H; An S; Zhu W; Jia G; Qiu X ChemSusChem; 2019 Mar; 12(6):1162-1168. PubMed ID: 30600937 [TBL] [Abstract][Full Text] [Related]
10. Structural and Thermodynamic Understandings in Mn-Based Sodium Layered Oxides during Anionic Redox. Kang SM; Kim D; Lee KS; Kim MS; Jin A; Park JH; Ahn CY; Jeon TY; Jung YH; Yu SH; Mun J; Sung YE Adv Sci (Weinh); 2020 Aug; 7(16):2001263. PubMed ID: 32832368 [TBL] [Abstract][Full Text] [Related]
11. Heavy Fluorination via Ion Exchange Achieves High-Performance Li-Mn-O-F Layered Cathode for Li-Ion Batteries. Lu J; Cao B; Hu B; Liao Y; Qi R; Liu J; Zuo C; Xu S; Li Z; Chen C; Zhang M; Pan F Small; 2022 Feb; 18(6):e2103499. PubMed ID: 34850552 [TBL] [Abstract][Full Text] [Related]
12. Nanocomposite Engineering of a High-Capacity Partially Ordered Cathode for Li-Ion Batteries. Lee E; Wi TU; Park J; Park SW; Kim MH; Lee DH; Park BC; Jo C; Malik R; Lee JH; Shin TJ; Kang SJ; Lee HW; Lee J; Seo DH Adv Mater; 2023 Mar; 35(13):e2208423. PubMed ID: 36600458 [TBL] [Abstract][Full Text] [Related]
13. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes. Tang M; Dalzini A; Li X; Feng X; Chien PH; Song L; Hu YY J Phys Chem Lett; 2017 Sep; 8(17):4009-4016. PubMed ID: 28796514 [TBL] [Abstract][Full Text] [Related]
14. Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries. Zhang X; Qiao Y; Guo S; Jiang K; Xu S; Xu H; Wang P; He P; Zhou H Adv Mater; 2019 Jul; 31(27):e1807770. PubMed ID: 31074542 [TBL] [Abstract][Full Text] [Related]
15. New Insights into Anionic Redox in P2-Type Oxide Cathodes for Sodium-Ion Batteries. Huang ZX; Li K; Cao JM; Zhang KY; Liu HH; Guo JZ; Liu Y; Wang T; Dai D; Zhang XY; Geng H; Wu XL Nano Lett; 2024 Oct; 24(43):13615-13623. PubMed ID: 39417609 [TBL] [Abstract][Full Text] [Related]
16. A thermodynamically stable O2-type cathode with reversible O2-P2 phase transition for advanced sodium-ion batteries. Hou P; Lin Z; Dong M; Sun Z; Gong M; Li F; Xu X J Colloid Interface Sci; 2023 Nov; 649():1006-1013. PubMed ID: 37392680 [TBL] [Abstract][Full Text] [Related]
17. Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type Layered Oxides. Wang H; Zhang X; Zhang H; Tian Y; Zhang Q; Zhang X; Yang S; Jia M; Pan H; Sheng C; Yan X ACS Appl Mater Interfaces; 2023 Mar; 15(9):11691-11702. PubMed ID: 36812350 [TBL] [Abstract][Full Text] [Related]
18. Elucidating and Mitigating the Degradation of Cationic-Anionic Redox Processes in Li Zhou K; Zheng S; Liu H; Zhang C; Gao H; Luo M; Xu N; Xiang Y; Liu X; Zhong G; Yang Y ACS Appl Mater Interfaces; 2019 Dec; 11(49):45674-45682. PubMed ID: 31714058 [TBL] [Abstract][Full Text] [Related]
19. Ion-Migration Mechanism: An Overall Understanding of Anionic Redox Activity in Metal Oxide Cathodes of Li/Na-Ion Batteries. Lai Y; Xie H; Li P; Li B; Zhao A; Luo L; Jiang Z; Fang Y; Chen S; Ai X; Xia D; Cao Y Adv Mater; 2022 Nov; 34(47):e2206039. PubMed ID: 36165216 [TBL] [Abstract][Full Text] [Related]
20. Intrinsic Origin of Nonhysteretic Oxygen Capacity in Conventional Na-Excess Layered Oxides. Choi G; Park S; Koo S; Lee J; Kwon D; Kim D ACS Appl Mater Interfaces; 2021 Oct; 13(39):46620-46626. PubMed ID: 34546710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]