These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 28635059)
1. Contribution to the reduction-induced fluorescence enhancement of natural organic matter: Aromatic ketones outweigh quinones. Xie P; Zhou L; Zhang Z; Ma J Luminescence; 2017 Dec; 32(8):1528-1534. PubMed ID: 28635059 [TBL] [Abstract][Full Text] [Related]
2. Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction and Reoxidation: The Role of Quinone and Nonquinone Moieties. Yang P; Jiang T; Cong Z; Liu G; Guo Y; Liu Y; Shi J; Hu L; Yin Y; Cai Y; Jiang G Environ Sci Technol; 2022 May; 56(10):6744-6753. PubMed ID: 35522821 [TBL] [Abstract][Full Text] [Related]
3. Contribution of Quinones and Ketones/Aldehydes to the Optical Properties of Humic Substances (HS) and Chromophoric Dissolved Organic Matter (CDOM). Del Vecchio R; Schendorf TM; Blough NV Environ Sci Technol; 2017 Dec; 51(23):13624-13632. PubMed ID: 29125750 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Nurmi JT; Tratnyek PG Environ Sci Technol; 2002 Feb; 36(4):617-24. PubMed ID: 11878375 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Cory RM; McKnight DM Environ Sci Technol; 2005 Nov; 39(21):8142-9. PubMed ID: 16294847 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland. Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676 [TBL] [Abstract][Full Text] [Related]
7. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation. Criquet J; Rodriguez EM; Allard S; Wellauer S; Salhi E; Joll CA; von Gunten U Water Res; 2015 Nov; 85():476-86. PubMed ID: 26379203 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines. Deng W; Chen J; Kang J; Zhang Q; Wang Y Chem Commun (Camb); 2016 May; 52(41):6805-8. PubMed ID: 27125360 [TBL] [Abstract][Full Text] [Related]
9. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Swietlik J; Sikorska E Water Res; 2004 Oct; 38(17):3791-9. PubMed ID: 15350431 [TBL] [Abstract][Full Text] [Related]
10. Optical properties of humic substances and CDOM: effects of borohydride reduction. Ma J; Del Vecchio R; Golanoski KS; Boyle ES; Blough NV Environ Sci Technol; 2010 Jul; 44(14):5395-402. PubMed ID: 20557095 [TBL] [Abstract][Full Text] [Related]
11. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents. Zhou H; Lian L; Yan S; Song W Water Res; 2017 Apr; 112():120-128. PubMed ID: 28153698 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of wastewater effluent organic matter (EfOM) from natural organic matter (NOM) using multiple analytical techniques. Nam SN; Amy G Water Sci Technol; 2008; 57(7):1009-15. PubMed ID: 18441426 [TBL] [Abstract][Full Text] [Related]
13. Quinone Moieties Link the Microbial Respiration of Natural Organic Matter to the Chemical Reduction of Diverse Nitroaromatic Compounds. Menezes O; Kocaman K; Wong S; Rios-Valenciana EE; Baker EJ; Hatt JK; Zhao J; Madeira CL; Krzmarzick MJ; Spain JC; Sierra-Alvarez R; Konstantinidis KT; Field JA Environ Sci Technol; 2022 Jul; 56(13):9387-9397. PubMed ID: 35704431 [TBL] [Abstract][Full Text] [Related]
14. Reversible redox chemistry of quinones: impact on biogeochemical cycles. Uchimiya M; Stone AT Chemosphere; 2009 Oct; 77(4):451-8. PubMed ID: 19665164 [TBL] [Abstract][Full Text] [Related]
15. [Low molecular weight oxidation by-products produced during catalytic ozonation with ferric hydroxide of NOM fractions isolated from filtrated water]. Lu JF; Qiu J; Ma J; Zhang T; Chen ZL; Wang H Huan Jing Ke Xue; 2009 Mar; 30(3):765-70. PubMed ID: 19432325 [TBL] [Abstract][Full Text] [Related]
16. Formation of dimer-type ketals in the reaction of 2,4,6-trichlorophenol and 2,4,6-trichloro-m-cresol with calcium hypochlorite in methanol: conversion to quinones and other compounds. Heasley VL; Anderson JD; Bowman ZS; Hanley JC; Sigmund GA; Van Horn D; Shellhamer DF J Org Chem; 2002 Sep; 67(19):6827-30. PubMed ID: 12227819 [TBL] [Abstract][Full Text] [Related]
17. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Zheng W; Liang L; Gu B Environ Sci Technol; 2012 Jan; 46(1):292-9. PubMed ID: 22107154 [TBL] [Abstract][Full Text] [Related]
18. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies. Zhu D; Yang Y; Buynak JD; Hua L Org Biomol Chem; 2006 Jul; 4(14):2690-5. PubMed ID: 16826293 [TBL] [Abstract][Full Text] [Related]
19. Structural determinant of chemical reactivity and potential health effects of quinones from natural products. Tu T; Giblin D; Gross ML Chem Res Toxicol; 2011 Sep; 24(9):1527-39. PubMed ID: 21721570 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process. Fan C; Horng CY; Li SJ Chemosphere; 2013 Sep; 93(1):178-83. PubMed ID: 23786814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]