These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702 [TBL] [Abstract][Full Text] [Related]
5. Dual contrast agent for computed tomography and magnetic resonance hard tissue imaging. Ventura M; Sun Y; Rusu V; Laverman P; Borm P; Heerschap A; Oosterwijk E; Boerman OC; Jansen JA; Walboomers XF Tissue Eng Part C Methods; 2013 Jun; 19(6):405-16. PubMed ID: 23259682 [TBL] [Abstract][Full Text] [Related]
6. Visualization of calcium phosphate cement in teeth by zero echo time Dou W; Mastrogiacomo S; Veltien A; Alghamdi HS; Walboomers XF; Heerschap A NMR Biomed; 2018 Feb; 31(2):. PubMed ID: 29160917 [No Abstract] [Full Text] [Related]
7. Zero echo time magnetic resonance imaging of contrast-agent-enhanced calcium phosphate bone defect fillers. Sun Y; Ventura M; Oosterwijk E; Jansen JA; Walboomers XF; Heerschap A Tissue Eng Part C Methods; 2013 Apr; 19(4):281-7. PubMed ID: 22934755 [TBL] [Abstract][Full Text] [Related]
8. Improved cellular uptake of perfluorocarbon nanoparticles for in vivo murine cardiac Constantinides C; McNeill E; Carnicer R; Al Haj Zen A; Sainz-Urruela R; Shaw A; Patel J; Swider E; Alonaizan R; Potamiti L; Hadjisavvas A; Padilla-Parra S; Kyriacou K; Srinivas M; Carr CA Nanomedicine; 2019 Jun; 18():391-401. PubMed ID: 30448526 [TBL] [Abstract][Full Text] [Related]
9. Continuous-Flow Production of Perfluorocarbon-Loaded Polymeric Nanoparticles: From the Bench to Clinic. Hoogendijk E; Swider E; Staal AHJ; White PB; van Riessen NK; Glaßer G; Lieberwirth I; Musyanovych A; Serra CA; Srinivas M; Koshkina O ACS Appl Mater Interfaces; 2020 Nov; 12(44):49335-49345. PubMed ID: 33086007 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics. Blom EJ; Klein-Nulend J; Wolke JG; van Waas MA; Driessens FC; Burger EH J Biomed Mater Res; 2002 Feb; 59(2):265-72. PubMed ID: 11745562 [TBL] [Abstract][Full Text] [Related]
11. Differential loading methods for BMP-2 within injectable calcium phosphate cement. van de Watering FC; Molkenboer-Kuenen JD; Boerman OC; van den Beucken JJ; Jansen JA J Control Release; 2012 Dec; 164(3):283-90. PubMed ID: 22800584 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Renno AC; van de Watering FC; Nejadnik MR; Crovace MC; Zanotto ED; Wolke JG; Jansen JA; van den Beucken JJ Acta Biomater; 2013 Mar; 9(3):5728-39. PubMed ID: 23159565 [TBL] [Abstract][Full Text] [Related]
14. Alveolar Macrophages-Mediated Translocation of Intratracheally Delivered Perfluorocarbon Nanoparticles to Achieve Lung Cancer Wang H; Li X; Wang J; Wang J; Zou H; Hu X; Yang L; Shen P; A R; Wang K; Li Y; Yang J; Wang K; Yang L; Wu L; Sun X Nano Lett; 2023 Apr; 23(7):2964-2973. PubMed ID: 36947431 [TBL] [Abstract][Full Text] [Related]
15. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
16. Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow-an ex vivo and in vivo study in sheep vertebrae. Xin L; Bungartz M; Maenz S; Horbert V; Hennig M; Illerhaus B; Günster J; Bossert J; Bischoff S; Borowski J; Schubert H; Jandt KD; Kunisch E; Kinne RW; Brinkmann O Spine J; 2016 Dec; 16(12):1468-1477. PubMed ID: 27496285 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material. Lee HJ; Kim B; Padalhin AR; Lee BT Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():385-392. PubMed ID: 30423721 [TBL] [Abstract][Full Text] [Related]
18. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. Yu L; Li Y; Zhao K; Tang Y; Cheng Z; Chen J; Zang Y; Wu J; Kong L; Liu S; Lei W; Wu Z PLoS One; 2013; 8(4):e62570. PubMed ID: 23638115 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Nanofibrous P(DLLA-CL) Balloons as Calcium Phosphate Cement Filled Containers for Bone Repair: in Vitro and in Vivo Studies. Liu X; Wei D; Zhong J; Ma M; Zhou J; Peng X; Ye Y; Sun G; He D ACS Appl Mater Interfaces; 2015 Aug; 7(33):18540-52. PubMed ID: 26258872 [TBL] [Abstract][Full Text] [Related]
20. [In vivo degradable properties of a novel injectable calcium phosphate cement containing poly lactic-co-glycolic acid]. Liao H; Duan X; Zhang Z; Zou H; Ye J; Liao W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Aug; 26(8):934-8. PubMed ID: 23012926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]