BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28635284)

  • 1. Competing Stereocomplexation and Homocrystallization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture: Effects of Miscible Blending with Other Polymers.
    Bao J; Xue X; Li K; Chang X; Xie Q; Yu C; Pan P
    J Phys Chem B; 2017 Jul; 121(28):6934-6943. PubMed ID: 28635284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride).
    Yu C; Han L; Bao J; Shan G; Bao Y; Pan P
    J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.
    Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y
    J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length.
    Jing Z; Shi X; Zhang G
    Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.
    Bao J; Han L; Shan G; Bao Y; Pan P
    J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator.
    Chang WW; Niu J; Peng H; Rong W
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization.
    Chen Y; Lan Q
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129459. PubMed ID: 38232890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers.
    Ren Q; Wu M; Weng Z; Zhu X; Li W; Huang P; Wang L; Zheng W; Ohshima M
    Carbohydr Polym; 2022 Jan; 276():118800. PubMed ID: 34823806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer.
    Zhu Q; Chang K; Qi L; Li X; Gao W; Gao Q
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends.
    Park HS; Hong CK
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-
    Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y
    RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exclusive Stereocomplex Crystallization of Linear and Multiarm Star-Shaped High-Molecular-Weight Stereo Diblock Poly(lactic acid)s.
    Han L; Shan G; Bao Y; Pan P
    J Phys Chem B; 2015 Nov; 119(44):14270-9. PubMed ID: 26457767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid).
    Fukushima K; Chang YH; Kimura Y
    Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness.
    Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q
    J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation.
    Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X
    J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials.
    Samuel C; Cayuela J; Barakat I; Müller AJ; Raquez JM; Dubois P
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11797-807. PubMed ID: 24144359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Stereocomplex Polylactide Particles on the Stereocomplexation of High Molecular Weight Polylactide Blends.
    Samsuri M; Iswaldi I; Purnama P
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid).
    Khwanpipat T; Seadan M; Suttiruengwong S
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29976863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.