These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28635291)

  • 1. Fractal Model for Wettability of Rough Surfaces.
    Jain R; Pitchumani R
    Langmuir; 2017 Jul; 33(28):7181-7190. PubMed ID: 28635291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal Model for Drag Reduction on Multiscale Nonwetting Rough Surfaces.
    Hatte S; Pitchumani R
    Langmuir; 2020 Dec; 36(47):14386-14402. PubMed ID: 33197195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanodroplets on rough hydrophilic and hydrophobic surfaces.
    Yang C; Tartaglino U; Persson BN
    Eur Phys J E Soft Matter; 2008 Feb; 25(2):139-52. PubMed ID: 18311474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop.
    Daub CD; Wang J; Kudesia S; Bratko D; Luzar A
    Faraday Discuss; 2010; 146():67-77; discussion 79-101, 395-401. PubMed ID: 21043415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective quantification of surface roughness parameters affecting superhydrophobicity.
    Cho Y; Park CH
    RSC Adv; 2020 Aug; 10(52):31251-31260. PubMed ID: 35520686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor.
    Feng S; Yu G; Cai X; Eulade M; Lin H; Chen J; Liu Y; Liao BQ
    Bioresour Technol; 2017 Nov; 244(Pt 1):560-568. PubMed ID: 28803106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf.
    Jiang ZX; Geng L; Huang YD; Guan SA; Dong W; Ma ZY
    J Colloid Interface Sci; 2011 Feb; 354(2):866-72. PubMed ID: 21115180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces.
    Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A
    Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity.
    Bottiglione F; Carbone G
    Langmuir; 2013 Jan; 29(2):599-609. PubMed ID: 23210830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Hydrophobic Nano-SiO
    Xing L; Xia T; Zhang Q
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor.
    Zhang M; Chen J; Ma Y; Shen L; He Y; Lin H
    Bioresour Technol; 2016 Sep; 216():817-23. PubMed ID: 27318159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.