BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28635519)

  • 21. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses.
    Kim DS; Hwang BK
    Plant J; 2011 May; 66(4):642-55. PubMed ID: 21299658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca.
    Li J; Zhang QY; Gao ZH; Wang F; Duan K; Ye ZW; Gao QH
    Gene; 2013 Sep; 527(1):215-27. PubMed ID: 23806759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity.
    Alvarez ME; Pennell RI; Meijer PJ; Ishikawa A; Dixon RA; Lamb C
    Cell; 1998 Mar; 92(6):773-84. PubMed ID: 9529253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro selection in resistance breeding of strawberry (Fragaria x ananassa duch.).
    Zebrowska JI
    Commun Agric Appl Biol Sci; 2010; 75(4):699-704. PubMed ID: 21534479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch).
    Langer SE; Marina M; Burgos JL; Martínez GA; Civello PM; Villarreal NM
    J Sci Food Agric; 2019 Jun; 99(8):4003-4010. PubMed ID: 30723911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice.
    Wang Y; Wu J; Kim SG; Tsuda K; Gupta R; Park SY; Kim ST; Kang KY
    Mol Plant Microbe Interact; 2016 Apr; 29(4):299-312. PubMed ID: 26780420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2.
    Shimizu K; Hossain MM; Kato K; Kubota M; Hyakumachi M
    J Oleo Sci; 2013; 62(8):613-21. PubMed ID: 23985491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction of Direct or Priming Resistance against Botrytis cinerea in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism.
    Wang K; Liao Y; Xiong Q; Kan J; Cao S; Zheng Y
    J Agric Food Chem; 2016 Jul; 64(29):5855-65. PubMed ID: 27368357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis.
    Yang Y; Zhang H; Li G; Li W; Wang X; Song F
    Plant Biotechnol J; 2009 Oct; 7(8):763-77. PubMed ID: 19754836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.
    Bernsdorff F; Döring AC; Gruner K; Schuck S; Bräutigam A; Zeier J
    Plant Cell; 2016 Jan; 28(1):102-29. PubMed ID: 26672068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm.
    Lee DH; Kim DS; Hwang BK
    Plant J; 2012 Oct; 72(2):235-48. PubMed ID: 22640562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Whole Plant and Detached Leaf Screening Techniques for Identifying Anthracnose Resistance in Strawberry Plants.
    Miller-Butler MA; Smith BJ; Babiker EM; Kreiser BR; Blythe EK
    Plant Dis; 2018 Nov; 102(11):2112-2119. PubMed ID: 30211658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible.
    Belbahri L; Boucher C; Candresse T; Nicole M; Ricci P; Keller H
    Plant J; 2001 Nov; 28(4):419-30. PubMed ID: 11737779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco.
    Kulye M; Liu H; Zhang Y; Zeng H; Yang X; Qiu D
    Plant Cell Environ; 2012 Dec; 35(12):2104-20. PubMed ID: 22591019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast Quenching the Burst of Host Salicylic Acid Is Common in Early Strawberry/Colletotrichum fructicola Interaction.
    He C; Duan K; Zhang L; Zhang L; Song L; Yang J; Zou X; Wang Y; Gao Q
    Phytopathology; 2019 Apr; 109(4):531-541. PubMed ID: 30130146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.
    Narusaka M; Minami T; Iwabuchi C; Hamasaki T; Takasaki S; Kawamura K; Narusaka Y
    PLoS One; 2015; 10(1):e0115864. PubMed ID: 25565273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.
    Niu DD; Liu HX; Jiang CH; Wang YP; Wang QY; Jin HL; Guo JH
    Mol Plant Microbe Interact; 2011 May; 24(5):533-42. PubMed ID: 21198361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive and negative roles for soybean MPK6 in regulating defense responses.
    Liu JZ; Braun E; Qiu WL; Shi YF; Marcelino-Guimarães FC; Navarre D; Hill JH; Whitham SA
    Mol Plant Microbe Interact; 2014 Aug; 27(8):824-34. PubMed ID: 24762222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogen-induced accumulation of an ellagitannin elicits plant defense response.
    Mamaní A; Filippone MP; Grellet C; Welin B; Castagnaro AP; Ricci JC
    Mol Plant Microbe Interact; 2012 Nov; 25(11):1430-9. PubMed ID: 22934564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.