These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28635643)

  • 1. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types.
    Yan L; Hu S; Alzahrani A; Alharbi S; Blanos P
    Biosensors (Basel); 2017 Jun; 7(2):. PubMed ID: 28635643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction.
    Alzahrani A; Hu S; Azorin-Peris V
    Biosensors (Basel); 2015 Jun; 5(2):288-307. PubMed ID: 26061828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise.
    Alzahrani A; Hu S; Azorin-Peris V; Barrett L; Esliger D; Hayes M; Akbare S; Achart J; Kuoch S
    Sensors (Basel); 2015 Oct; 15(10):25681-702. PubMed ID: 26473860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot Study Assessing the Influence of Skin Type on the Heart Rate Measurements Obtained by Photoplethysmography with the Apple Watch.
    Sañudo B; De Hoyo M; Muñoz-López A; Perry J; Abt G
    J Med Syst; 2019 May; 43(7):195. PubMed ID: 31119387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Illumination Adaptation in a Multi-Wavelength Opto-Electronic Patch Sensor.
    Yan L; Yu Y; Hu S; Mulvaney D; Blanos P; Alharbi S; Hayes M
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring.
    Iakovlev D; Hu S; Hassan H; Dwyer V; Ashayer-Soltani R; Hunt C; Shen J
    Biosensors (Basel); 2018 Mar; 8(2):. PubMed ID: 29596396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of skin type and wavelength on light wave reflectance.
    Fallow BA; Tarumi T; Tanaka H
    J Clin Monit Comput; 2013 Jun; 27(3):313-7. PubMed ID: 23397431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen Saturation Measurements from Green and Orange Illuminations of Multi-Wavelength Optoelectronic Patch Sensors.
    Alharbi S; Hu S; Mulvaney D; Barrett L; Yan L; Blanos P; Elsahar Y; Adema S
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30602710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MW-PPG Sensor: An on-Chip Spectrometer Approach.
    Chang CC; Wu CT; Choi BI; Fang TJ
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment.
    Hu S; Azorin-Peris V; Zheng J
    J Healthc Eng; 2013; 4(4):505-28. PubMed ID: 24287429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive threshold method for the peak detection of photoplethysmographic waveform.
    Shin HS; Lee C; Lee M
    Comput Biol Med; 2009 Dec; 39(12):1145-52. PubMed ID: 19883905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects.
    Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.
    Peng F; Liu H; Wang W
    Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Vital Sign Extraction for Real-Time Opto-Physiological Monitoring at Varying Physical Activity Intensity Levels.
    Zheng X; Dwyer VM; Barrett LA; Derakhshani M; Hu S
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3107-3118. PubMed ID: 37071520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spot measurement of heart rate based on morphology of PhotoPlethysmoGraphic (PPG) signals.
    Madhan Mohan P; Nagarajan V; Vignesh JC
    J Med Eng Technol; 2017 Feb; 41(2):87-96. PubMed ID: 27609492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI).
    Amelard R; Scharfenberger C; Kazemzadeh F; Pfisterer KJ; Lin BS; Clausi DA; Wong A
    Sci Rep; 2015 Oct; 5():14637. PubMed ID: 26440644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opto-electronic DNA chip: high performance chip reading with an all-electric interface.
    Mallard F; Marchand G; Ginot F; Campagnolo R
    Biosens Bioelectron; 2005 Mar; 20(9):1813-20. PubMed ID: 15681198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflective oxygen saturation monitoring at hypothenar and its validation by human hypoxia experiment.
    Guo T; Cao Z; Zhang Z; Li D; Yu M
    Biomed Eng Online; 2015 Aug; 14():76. PubMed ID: 26242309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.