BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28635965)

  • 1. Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple.
    Ma X; Cai Z; Liu W; Ge S; Tang L
    Heredity (Edinb); 2017 Sep; 119(3):185-196. PubMed ID: 28635965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.).
    Coart E; VAN Glabeke S; DE Loose M; Larsen AS; Roldán-Ruiz I
    Mol Ecol; 2006 Jul; 15(8):2171-82. PubMed ID: 16780433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus.
    Aguiar B; Vieira J; Cunha AE; Fonseca NA; Iezzoni A; van Nocker S; Vieira CP
    PLoS One; 2015; 10(5):e0126138. PubMed ID: 25993016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily.
    Sassa H; Nishio T; Kowyama Y; Hirano H; Koba T; Ikehashi H
    Mol Gen Genet; 1996 Mar; 250(5):547-57. PubMed ID: 8676858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line.
    Nikiforova SV; Cavalieri D; Velasco R; Goremykin V
    Mol Biol Evol; 2013 Aug; 30(8):1751-60. PubMed ID: 23676769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa).
    Kato S; Mukai Y
    Heredity (Edinb); 2004 Mar; 92(3):249-56. PubMed ID: 14710172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allelic diversity of S-RNase alleles in diploid potato species.
    Dzidzienyo DK; Bryan GJ; Wilde G; Robbins TP
    Theor Appl Genet; 2016 Oct; 129(10):1985-2001. PubMed ID: 27497984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroplast heterogeneity and historical admixture within the genus Malus.
    Volk GM; Henk AD; Baldo A; Fazio G; Chao CT; Richards CM
    Am J Bot; 2015 Jul; 102(7):1198-208. PubMed ID: 26199374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 15-Myr-old genetic bottleneck.
    Paape T; Igic B; Smith SD; Olmstead R; Bohs L; Kohn JR
    Mol Biol Evol; 2008 Apr; 25(4):655-63. PubMed ID: 18209194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers].
    Omasheva ME; Chekalin SV; Galiakparov NN
    Genetika; 2015 Jul; 51(7):759-65. PubMed ID: 26410929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites.
    Schueler S; Tusch A; Scholz F
    Mol Ecol; 2006 Oct; 15(11):3231-43. PubMed ID: 16968267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing gene flow in apple using a descendant of Malus sieversii var. sieversii f. niedzwetzkyana as an identifier for pollen dispersal.
    Reim S; Flachowsky H; Michael M; Hanke MV
    Environ Biosafety Res; 2006; 5(2):89-104. PubMed ID: 17328855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties.
    Cornille A; Gladieux P; Smulders MJ; Roldán-Ruiz I; Laurens F; Le Cam B; Nersesyan A; Clavel J; Olonova M; Feugey L; Gabrielyan I; Zhang XG; Tenaillon MI; Giraud T
    PLoS Genet; 2012; 8(5):e1002703. PubMed ID: 22589740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host.
    Gladieux P; Zhang XG; Róldan-Ruiz I; Caffier V; Leroy T; Devaux M; Van Glabeke S; Coart E; Le Cam B
    Mol Ecol; 2010 Feb; 19(4):658-74. PubMed ID: 20088887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles.
    Broothaerts W
    Theor Appl Genet; 2003 Feb; 106(4):703-14. PubMed ID: 12596001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 25 full-length S-RNase alleles, including flanking regions, from a pool of resequenced apple cultivars.
    De Franceschi P; Bianco L; Cestaro A; Dondini L; Velasco R
    Plant Mol Biol; 2018 Jun; 97(3):279-296. PubMed ID: 29845556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete chloroplast genome studies of different apple varieties indicated the origin of modern cultivated apples from
    Li X; Ding Z; Miao H; Bao J; Tian X
    PeerJ; 2022; 10():e13107. PubMed ID: 35321410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Admixture in the Population of Wild Apple (
    Ha YH; Oh SH; Lee SR
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33467767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gametophytic self-incompatibility in Lycium parishii (Solanaceae): allelic diversity, genealogical structure, and patterns of molecular evolution at the S-RNase locus.
    Savage AE; Miller JS
    Heredity (Edinb); 2006 Jun; 96(6):434-44. PubMed ID: 16622475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fox Hunting in Wild Apples: Searching for Novel Genes in
    Wisniewski M; Artlip T; Liu J; Ma J; Burchard E; Norelli J; Dardick C
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33327659
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.