These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28636064)

  • 1. Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose.
    Yamakoshi Y; Matsumura K; Yamakoshi T; Lee J; Rolfe P; Kato Y; Shimizu K; Yamakoshi KI
    J Biomed Opt; 2017 Jun; 22(6):67001. PubMed ID: 28636064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Sphere Finger-Photoplethysmography: Preliminary Investigation towards Practical Non-Invasive Measurement of Blood Constituents.
    Yamakoshi T; Lee J; Matsumura K; Yamakoshi Y; Rolfe P; Kiyohara D; Yamakoshi K
    PLoS One; 2015; 10(12):e0143506. PubMed ID: 26636974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between Speckle Plethysmography and Photoplethysmography during Cold Pressor Test Referenced to Finger Arterial Pressure.
    Herranz Olazabal J; Lorato I; Kling J; Verhoeven M; Wieringa F; Van Hoof C; Verkruijsse W; Hermeling E
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On non-invasive measurement of gastric motility from finger photoplethysmographic signal.
    Yacin SM; Manivannan M; Chakravarthy VS
    Ann Biomed Eng; 2010 Dec; 38(12):3744-55. PubMed ID: 20614246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time.
    Rajala S; Lindholm H; Taipalus T
    Physiol Meas; 2018 Aug; 39(7):075010. PubMed ID: 29794339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison and Noise Suppression of the Transmitted and Reflected Photoplethysmography Signals.
    Li S; Liu L; Wu J; Tang B; Li D
    Biomed Res Int; 2018; 2018():4523593. PubMed ID: 30356404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of the effect of melanin concentration on light-tissue interactions in transmittance and reflectance finger photoplethysmography.
    Al-Halawani R; Qassem M; Kyriacou PA
    Sci Rep; 2024 Apr; 14(1):8145. PubMed ID: 38584229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncontact Monitoring of Blood Oxygen Saturation Using Camera and Dual-Wavelength Imaging System.
    Shao D; Liu C; Tsow F; Yang Y; Du Z; Iriya R; Yu H; Tao N
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1091-8. PubMed ID: 26415199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ballistocardiographic Artifacts in PPG Imaging.
    Moco AV; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1804-1811. PubMed ID: 26599525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing motion artifacts in photoplethysmograms by using relative sensor motion: phantom study.
    Wijshoff RW; Mischi M; Veen J; van der Lee AM; Aarts RM
    J Biomed Opt; 2012 Nov; 17(11):117007. PubMed ID: 23192359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic Sensing of 3-D Fingertip Force by Using Nonpulsatile and Pulsatile Signals in the Proximal Part.
    Yoshimoto S; Hinatsu S; Kuroda Y; Oshiro O
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1155-1164. PubMed ID: 29994404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Volume-Compensation Method for Indirect Finger Arterial Pressure Determination: Comparison with Brachial Sphygmomanometry.
    Matsumura K; Yamakoshi T; Rolfe P; Yamakoshi KI
    IEEE Trans Biomed Eng; 2017 May; 64(5):1131-1137. PubMed ID: 27429430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
    Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J
    Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Model for Waveform Dissimilarities in Dual-Depth Reflectance-PPG.
    Moco A; Stuijk S; de Haan G; Wang RK; Verkruysse W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5125-5130. PubMed ID: 30441494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.