These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28636314)

  • 1. Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction.
    Yang X; Yu D; Cao B
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24078-24084. PubMed ID: 28636314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions.
    Yang X; Yu D; Cao B; To AC
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):29-35. PubMed ID: 27936563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J; Meng L
    ACS Omega; 2022 Aug; 7(32):28030-28040. PubMed ID: 35990432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides.
    Chen Q; Yan X; Wu L; Xiao Y; Wang S; Cheng G; Zheng R; Hao Q
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5435-5444. PubMed ID: 33492119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal rectification in a polymer-functionalized single-wall carbon nanotube.
    Pal S; Puri IK
    Nanotechnology; 2014 Aug; 25(34):345401. PubMed ID: 25078473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A; Lahkar S; Li X; Li S; Ye H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon thermal rectification in hybrid graphene-[Formula: see text]: a molecular dynamics simulation.
    Farzadian O; Razeghiyadaki A; Spitas C; Kostas KV
    Nanotechnology; 2020 Nov; 31(48):485401. PubMed ID: 32931472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of thermal rectification in suspended monolayer graphene.
    Wang H; Hu S; Takahashi K; Zhang X; Takamatsu H; Chen J
    Nat Commun; 2017 Jun; 8():15843. PubMed ID: 28607493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports.
    Gao Y; Xu B
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34506-34517. PubMed ID: 28895714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures.
    Wang Y; Vallabhaneni A; Hu J; Qiu B; Chen YP; Ruan X
    Nano Lett; 2014 Feb; 14(2):592-6. PubMed ID: 24393070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of structural asymmetry on thermal rectification in nanostructures.
    Yang X; Xu J; Wu S; Yu D; Cao B
    J Phys Condens Matter; 2018 Oct; 30(43):435305. PubMed ID: 30247146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach.
    Yousefi F; Khoeini F; Rajabpour A
    Nanotechnology; 2020 Apr; 31(28):285707. PubMed ID: 32217831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems.
    Duan Z; Liu D; Zhang G; Li Q; Liu C; Fan S
    Nanoscale; 2017 Mar; 9(9):3133-3139. PubMed ID: 28218327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposition of the Thermal Boundary Resistance across Carbon Nanotube-Graphene Junctions to Different Mechanisms.
    Shi J; Zhong Y; Fisher TS; Ruan X
    ACS Appl Mater Interfaces; 2018 May; 10(17):15226-15231. PubMed ID: 29613768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance diodes based on black phosphorus/carbon nanomaterial heterostructures.
    Ye X; Zhang Y; Gao S; Zhao X; Xu K; Wang L; Jiang S; Shi F; Yang J; Cao Z; Chen C
    Nanoscale Adv; 2023 May; 5(9):2427-2436. PubMed ID: 37143813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal rectification in ultra-narrow hydrogen functionalized graphene: a non-equilibrium molecular dynamics study.
    Sharifi M; Heidaryan E
    J Mol Model; 2022 Sep; 28(10):298. PubMed ID: 36066753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon thermal conduction in a graphene-C
    Han D; Wang X; Ding W; Chen Y; Zhang J; Xin G; Cheng L
    Nanotechnology; 2019 Feb; 30(7):075403. PubMed ID: 30524108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal AND Gate Using a Monolayer Graphene Nanoribbon.
    Pal S; Puri IK
    Small; 2015 Jun; 11(24):2910-7. PubMed ID: 25689108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.