These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28636384)

  • 61. Viral assembly of oriented quantum dot nanowires.
    Mao C; Flynn CE; Hayhurst A; Sweeney R; Qi J; Georgiou G; Iverson B; Belcher AM
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6946-51. PubMed ID: 12777631
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods.
    Kalisman P; Nakibli Y; Amirav L
    J Vis Exp; 2016 Feb; (108):e53675. PubMed ID: 26891234
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphine-free synthesis of CdSe nanocrystals.
    Jasieniak J; Bullen C; van Embden J; Mulvaney P
    J Phys Chem B; 2005 Nov; 109(44):20665-8. PubMed ID: 16853676
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication of mesoporous metal chalcogenide nanoflake silica thin films and spongy mesoporous CdS and CdSe.
    Türker Y; Karakaya C; Dag Ö
    Chemistry; 2012 Mar; 18(12):3695-705. PubMed ID: 22344939
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Theoretical characterization of triangular CdS nanocrystals: a tight-binding approach.
    Díaz JG; Planelles J
    Langmuir; 2004 Dec; 20(25):11278-84. PubMed ID: 15568886
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transparent luminescent bulk nanocomposites of polysiloxane embedded with CdS nanocrystallines by a direct dispersion process.
    Shen ZR; Li YL; Liu JB; Chen MX; Hou F; Wang LQ
    Nanoscale; 2012 Mar; 4(5):1652-7. PubMed ID: 22298325
    [TBL] [Abstract][Full Text] [Related]  

  • 67. III-V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse.
    Liu W; Lee JS; Talapin DV
    J Am Chem Soc; 2013 Jan; 135(4):1349-57. PubMed ID: 23267673
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties.
    Zhou H; Fan T; Han T; Li X; Ding J; Zhang D; Guo Q; Ogawa H
    Nanotechnology; 2009 Feb; 20(8):085603. PubMed ID: 19417451
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures.
    Ouyang L; Maher KN; Yu CL; McCarty J; Park H
    J Am Chem Soc; 2007 Jan; 129(1):133-8. PubMed ID: 17199292
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Glutathione-protected gold nanocluster decorated cadmium sulfide with enhanced photostability and photocatalytic activity.
    Ling S; Cui X; Zhang X; Liu B; He C; Wang J; Qin W; Zhang Y; Gao Y; Bai G
    J Colloid Interface Sci; 2018 Nov; 530():120-126. PubMed ID: 29966844
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis.
    Deng Z; Cao L; Tang F; Zou B
    J Phys Chem B; 2005 Sep; 109(35):16671-5. PubMed ID: 16853121
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photocatalytic oxidation of ammonia by cadmium sulfide/titanate nanotubes synthesised by microwave hydrothermal method.
    Chen YC; Lo SL; Ou HH; Chen CH
    Water Sci Technol; 2011; 63(3):550-7. PubMed ID: 21278479
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap.
    Habibi MH; Rahmati MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():13-8. PubMed ID: 24926644
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission.
    Cassette E; Mahler B; Guigner JM; Patriarche G; Dubertret B; Pons T
    ACS Nano; 2012 Aug; 6(8):6741-50. PubMed ID: 22800283
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Size- and shape-dependent phase transformations in wurtzite ZnS nanostructures.
    Feigl CA; Barnard AS; Russo SP
    Phys Chem Chem Phys; 2012 Jul; 14(28):9871-9. PubMed ID: 22722225
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sulfur-source-dependent phase-selective preparation of Cu
    Bian Q; Liao H; Tang C; Li K; Wan J; Xiao Y; Cheng B; Lei S
    Dalton Trans; 2022 Aug; 51(30):11416-11426. PubMed ID: 35822345
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of metal ion solubility on the oxidative assembly of metal sulfide quantum dots.
    Silva KL; Silmi L; Brock SL
    J Chem Phys; 2019 Dec; 151(23):234715. PubMed ID: 31864264
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Triethyl-Borates as Surfactants to Stabilize Semiconductor Nanoplatelets in Polar Solvents and to Tune Their Optical Properties.
    Deng Y; Chen X; Liang J; Wang Y
    Front Chem; 2022; 10():860781. PubMed ID: 35494634
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Wurtzite CuNi
    Xu Y; Fu Q; Lei S; Xiong J; Sun S; Bian Q; Xiao Y; Cheng B
    Inorg Chem; 2019 Nov; 58(22):15283-15290. PubMed ID: 31701750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.