These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 28636415)
1. Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye. Choi H; Phillips C; Oh JY; Stock EM; Kim DK; Won JK; Fulcher S Curr Eye Res; 2017 Oct; 42(10):1348-1357. PubMed ID: 28636415 [TBL] [Abstract][Full Text] [Related]
2. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model. Uchiyama M; Shimizu A; Masuda Y; Nagasaka S; Fukuda Y; Takahashi H Mol Vis; 2013; 19():2135-50. PubMed ID: 24194635 [TBL] [Abstract][Full Text] [Related]
3. Transient downregulation of microRNA-206 protects alkali burn injury in mouse cornea by regulating connexin 43. Li X; Zhou H; Tang W; Guo Q; Zhang Y Int J Clin Exp Pathol; 2015; 8(3):2719-27. PubMed ID: 26045777 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effects of Wang YL; Gao GP; Wang YQ; Wu Y; Peng ZY; Zhou Q Mol Vis; 2017; 23():286-295. PubMed ID: 28479848 [TBL] [Abstract][Full Text] [Related]
5. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. Lee SH; Kim KW; Joo K; Kim JC BMC Ophthalmol; 2016 May; 16():57. PubMed ID: 27356868 [TBL] [Abstract][Full Text] [Related]
6. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model. Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832 [TBL] [Abstract][Full Text] [Related]
8. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model. Kim JW; Jeong H; Yang MS; Lim CW; Kim B Int Immunopharmacol; 2017 Jul; 48():126-134. PubMed ID: 28501766 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured lipid carriers containing rapamycin for prevention of corneal fibroblasts proliferation and haze propagation after burn injuries: In vitro and in vivo. Zahir-Jouzdani F; Khonsari F; Soleimani M; Mahbod M; Arefian E; Heydari M; Shahhosseini S; Dinarvand R; Atyabi F J Cell Physiol; 2019 Apr; 234(4):4702-4712. PubMed ID: 30191977 [TBL] [Abstract][Full Text] [Related]
10. Absence of Therapeutic Benefit of the Anti-Inflammatory Protein TSG-6 for Corneal Alkali Injury in a Rat Model. Choi H; Phillips C; Oh JY; Potts L; Reger RL; Prockop DJ; Fulcher S Curr Eye Res; 2019 Aug; 44(8):873-881. PubMed ID: 30935217 [No Abstract] [Full Text] [Related]
11. (-)-Epigallocatechin-3-gallate, reduces corneal damage secondary from experimental grade II alkali burns in mice. Gulias-Cañizo R; Lagunes-Guillén A; González-Robles A; Sánchez-Guzmán E; Castro-Muñozledo F Burns; 2019 Mar; 45(2):398-412. PubMed ID: 30600126 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of RAP1 enhances corneal recovery following alkali injury. Poon MW; Yan L; Jiang D; Qin P; Tse HF; Wong IY; Wong DS; Tergaonkar V; Lian Q Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):711-21. PubMed ID: 25574050 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effect of sub-conjunctival tocilizumab on alkali burn induced corneal neovascularization in rats. Sari ES; Yazici A; Aksit H; Yay A; Sahin G; Yildiz O; Ermis SS; Seyrek K; Yalcin B Curr Eye Res; 2015 Jan; 40(1):48-55. PubMed ID: 24910898 [TBL] [Abstract][Full Text] [Related]
14. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization. Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991 [TBL] [Abstract][Full Text] [Related]
15. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Yamada J; Dana MR; Sotozono C; Kinoshita S Exp Eye Res; 2003 Feb; 76(2):161-7. PubMed ID: 12565803 [TBL] [Abstract][Full Text] [Related]
16. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Conners MS; Urbano F; Vafeas C; Stoltz RA; Dunn MW; Schwartzman ML Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):1963-71. PubMed ID: 9331260 [TBL] [Abstract][Full Text] [Related]
17. Long term observation of ocular surface alkali burn in rabbit models: Quantitative analysis of corneal haze, vascularity and self-recovery. Kethiri AR; Singh VK; Damala M; Basu S; Rao CM; Bokara KK; Singh V Exp Eye Res; 2021 Apr; 205():108526. PubMed ID: 33662355 [TBL] [Abstract][Full Text] [Related]
18. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Liu Y; Shu Y; Yin L; Xie T; Zou J; Zhan P; Wang Y; Wei T; Zhu L; Yang X; Wang W; Cai J; Li Y; Yao Y; Wang X Exp Eye Res; 2021 Jun; 207():108568. PubMed ID: 33839112 [TBL] [Abstract][Full Text] [Related]
19. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization. Lu P; Li L; Liu G; van Rooijen N; Mukaida N; Zhang X Cornea; 2009 Jun; 28(5):562-9. PubMed ID: 19421039 [TBL] [Abstract][Full Text] [Related]
20. Effects of nicotine on corneal wound healing following acute alkali burn. Kim JW; Lim CW; Kim B PLoS One; 2017; 12(6):e0179982. PubMed ID: 28644870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]