These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28636461)

  • 1. GeNICE: A Novel Framework for Gene Network Inference by Clustering, Exhaustive Search, and Multivariate Analysis.
    De Souza Jacomini R; Martins DC; Da Silva FL; Costa AHR
    J Comput Biol; 2017 Aug; 24(8):809-830. PubMed ID: 28636461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease specific modules and hub genes for intervention strategies: A co-expression network based approach for Plasmodium falciparum clinical isolates.
    Subudhi AK; Boopathi PA; Pandey I; Kaur R; Middha S; Acharya J; Kochar SK; Kochar DK; Das A
    Infect Genet Evol; 2015 Oct; 35():96-108. PubMed ID: 26247716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mutual information-based Boolean network inference method from time-series gene expression data.
    Barman S; Kwon YK
    PLoS One; 2017; 12(2):e0171097. PubMed ID: 28178334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Model Integration Network Inference Algorithm with Clustering and Hub Genes Finding.
    Li W; Zhang W; Zhang J
    Mol Inform; 2020 May; 39(5):e1900075. PubMed ID: 31990443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Gene Co-Expression Network Inference for the Malaria Parasite
    Li Q; Button-Simons KA; Sievert MAC; Chahoud E; Foster GF; Meis K; Ferdig MT; Milenković T
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery.
    Chen Y; Xu R
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S9. PubMed ID: 26099491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of nucleosome positioning landscapes enables gene discovery in the human malaria parasite Plasmodium falciparum.
    Lu XM; Bunnik EM; Pokhriyal N; Nasseri S; Lonardi S; Le Roch KG
    BMC Genomics; 2015 Nov; 16():1005. PubMed ID: 26607328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving gene regulatory network inference using network topology information.
    Nair A; Chetty M; Wangikar PP
    Mol Biosyst; 2015 Sep; 11(9):2449-63. PubMed ID: 26126758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SABRE: a method for assessing the stability of gene modules in complex tissues and subject populations.
    Shannon CP; Chen V; Takhar M; Hollander Z; Balshaw R; McManus BM; Tebbutt SJ; Sin DD; Ng RT
    BMC Bioinformatics; 2016 Nov; 17(1):460. PubMed ID: 27842512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IRIS: a method for reverse engineering of regulatory relations in gene networks.
    Morganella S; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2009 Dec; 10():444. PubMed ID: 20030818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulatory networks inference using a multi-GPU exhaustive search algorithm.
    Borelli FF; de Camargo RY; Martins DC; Rozante LC
    BMC Bioinformatics; 2013; 14 Suppl 18(Suppl 18):S5. PubMed ID: 24564268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive intervention in probabilistic boolean networks.
    Layek R; Datta A; Pal R; Dougherty ER
    Bioinformatics; 2009 Aug; 25(16):2042-8. PubMed ID: 19505946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size.
    Guo W; Calixto CPG; Tzioutziou N; Lin P; Waugh R; Brown JWS; Zhang R
    BMC Syst Biol; 2017 Jun; 11(1):62. PubMed ID: 28629365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network inference workflow applied to virulence-related processes in Salmonella typhimurium.
    Taylor RC; Singhal M; Weller J; Khoshnevis S; Shi L; McDermott J
    Ann N Y Acad Sci; 2009 Mar; 1158():143-58. PubMed ID: 19348639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RMaNI: Regulatory Module Network Inference framework.
    Madhamshettiwar PB; Maetschke SR; Davis MJ; Ragan MA
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S14. PubMed ID: 24564496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.