BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1354 related articles for article (PubMed ID: 28636604)

  • 1. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.
    Larson AG; Elnatan D; Keenen MM; Trnka MJ; Johnston JB; Burlingame AL; Agard DA; Redding S; Narlikar GJ
    Nature; 2017 Jul; 547(7662):236-240. PubMed ID: 28636604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular interactions underlying the phase separation of HP1α: role of phosphorylation, ligand and nucleic acid binding.
    Her C; Phan TM; Jovic N; Kapoor U; Ackermann BE; Rizuan A; Kim YC; Mittal J; Debelouchina GT
    Nucleic Acids Res; 2022 Dec; 50(22):12702-12722. PubMed ID: 36537242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains.
    Keenen MM; Brown D; Brennan LD; Renger R; Khoo H; Carlson CR; Huang B; Grill SW; Narlikar GJ; Redding S
    Elife; 2021 Mar; 10():. PubMed ID: 33661100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase separation drives heterochromatin domain formation.
    Strom AR; Emelyanov AV; Mir M; Fyodorov DV; Darzacq X; Karpen GH
    Nature; 2017 Jul; 547(7662):241-245. PubMed ID: 28636597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal interactions drive chromatin phase separation and compaction.
    Ukmar-Godec T; Cima-Omori MS; Yerkesh Z; Eswara K; Yu T; Ramesh R; Riviere G; Ibanez de Opakua A; Fischle W; Zweckstetter M
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2308858120. PubMed ID: 38048471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HP1 reshapes nucleosome core to promote phase separation of heterochromatin.
    Sanulli S; Trnka MJ; Dharmarajan V; Tibble RW; Pascal BD; Burlingame AL; Griffin PR; Gross JD; Narlikar GJ
    Nature; 2019 Nov; 575(7782):390-394. PubMed ID: 31618757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation.
    White D; Rafalska-Metcalf IU; Ivanov AV; Corsinotti A; Peng H; Lee SC; Trono D; Janicki SM; Rauscher FJ
    Mol Cancer Res; 2012 Mar; 10(3):401-14. PubMed ID: 22205726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylated HP1α-Nucleosome Interactions in Phase Separated Environments.
    Elathram N; Ackermann BE; Clark ET; Dunn SR; Debelouchina GT
    J Am Chem Soc; 2023 Nov; 145(44):23994-24004. PubMed ID: 37870432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity.
    Nishibuchi G; Machida S; Osakabe A; Murakoshi H; Hiragami-Hamada K; Nakagawa R; Fischle W; Nishimura Y; Kurumizaka H; Tagami H; Nakayama J
    Nucleic Acids Res; 2014 Nov; 42(20):12498-511. PubMed ID: 25332400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hinge and chromoshadow of HP1α participate in recognition of K9 methylated histone H3 in nucleosomes.
    Mishima Y; Watanabe M; Kawakami T; Jayasinghe CD; Otani J; Kikugawa Y; Shirakawa M; Kimura H; Nishimura O; Aimoto S; Tajima S; Suetake I
    J Mol Biol; 2013 Jan; 425(1):54-70. PubMed ID: 23142645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appearance and heterochromatin localization of HP1α in early mouse embryos depends on cytoplasmic clock and H3S10 phosphorylation.
    Meglicki M; Teperek-Tkacz M; Borsuk E
    Cell Cycle; 2012 Jun; 11(11):2189-205. PubMed ID: 22622086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry.
    Ruppert JG; Samejima K; Platani M; Molina O; Kimura H; Jeyaprakash AA; Ohta S; Earnshaw WC
    EMBO J; 2018 Mar; 37(6):. PubMed ID: 29467217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HP1α is not necessary for the structural maintenance of centromeric heterochromatin.
    Velichko AK; Kantidze OL; Razin SV
    Epigenetics; 2011 Mar; 6(3):380-7. PubMed ID: 20962594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of Heterochromatin Formation by Human HP1.
    Machida S; Takizawa Y; Ishimaru M; Sugita Y; Sekine S; Nakayama JI; Wolf M; Kurumizaka H
    Mol Cell; 2018 Feb; 69(3):385-397.e8. PubMed ID: 29336876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HP1α mediates defective heterochromatin repair and accelerates senescence in Zmpste24-deficient cells.
    Liu J; Yin X; Liu B; Zheng H; Zhou G; Gong L; Li M; Li X; Wang Y; Hu J; Krishnan V; Zhou Z; Wang Z
    Cell Cycle; 2014; 13(8):1237-47. PubMed ID: 24584199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation.
    Larson AG; Narlikar GJ
    Biochemistry; 2018 May; 57(17):2540-2548. PubMed ID: 29644850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins.
    Nielsen AL; Oulad-Abdelghani M; Ortiz JA; Remboutsika E; Chambon P; Losson R
    Mol Cell; 2001 Apr; 7(4):729-39. PubMed ID: 11336697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization.
    Shakya A; Park S; Rana N; King JT
    Biophys J; 2020 Feb; 118(3):753-764. PubMed ID: 31952807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha.
    Nielsen AL; Sanchez C; Ichinose H; Cerviño M; Lerouge T; Chambon P; Losson R
    EMBO J; 2002 Nov; 21(21):5797-806. PubMed ID: 12411497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay between H2A.Z and H3K9 methylation in regulating HP1α binding to linker histone-containing chromatin.
    Ryan DP; Tremethick DJ
    Nucleic Acids Res; 2018 Oct; 46(18):9353-9366. PubMed ID: 30007360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 68.