These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28636611)

  • 1. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.
    Mulero-Pázmány M; Jenni-Eiermann S; Strebel N; Sattler T; Negro JJ; Tablado Z
    PLoS One; 2017; 12(6):e0178448. PubMed ID: 28636611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys.
    Barnas A; Newman R; Felege CJ; Corcoran MP; Hervey SD; Stechmann TJ; Rockwell RF; Ellis-Felege SN
    Ecol Evol; 2018 Jan; 8(2):1328-1338. PubMed ID: 29375801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terrestrial mammalian wildlife responses to Unmanned Aerial Systems approaches.
    Bennitt E; Bartlam-Brooks HLA; Hubel TY; Wilson AM
    Sci Rep; 2019 Feb; 9(1):2142. PubMed ID: 30765800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental approach to evaluate the potential of drones in terrestrial mammal research: a gregarious ungulate as a study model.
    Schroeder NM; Panebianco A; Gonzalez Musso R; Carmanchahi P
    R Soc Open Sci; 2020 Jan; 7(1):191482. PubMed ID: 32218965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the disturbance potential of small unoccupied aircraft systems (UAS) on gray seals (
    Arona L; Dale J; Heaslip SG; Hammill MO; Johnston DW
    PeerJ; 2018; 6():e4467. PubMed ID: 29576950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned aerial survey of elephants.
    Vermeulen C; Lejeune P; Lisein J; Sawadogo P; Bouché P
    PLoS One; 2013; 8(2):e54700. PubMed ID: 23405088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching birds with drones: first experiments and ethical guidelines.
    Vas E; Lescroël A; Duriez O; Boguszewski G; Grémillet D
    Biol Lett; 2015 Feb; 11(2):20140754. PubMed ID: 25652220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.
    Van Tilburg C
    Wilderness Environ Med; 2017 Jun; 28(2):116-118. PubMed ID: 28318989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population census of a large common tern colony with a small unmanned aircraft.
    Chabot D; Craik SR; Bird DM
    PLoS One; 2015; 10(4):e0122588. PubMed ID: 25874997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems.
    Ditmer MA; Werden LK; Tanner JC; Vincent JB; Callahan P; Iaizzo PA; Laske TG; Garshelis DL
    Conserv Physiol; 2019; 7(1):coy067. PubMed ID: 30680216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ranges of Injury Risk Associated with Impact from Unmanned Aircraft Systems.
    Campolettano ET; Bland ML; Gellner RA; Sproule DW; Rowson B; Tyson AM; Duma SM; Rowson S
    Ann Biomed Eng; 2017 Dec; 45(12):2733-2741. PubMed ID: 28913606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery.
    Seymour AC; Dale J; Hammill M; Halpin PN; Johnston DW
    Sci Rep; 2017 Mar; 7():45127. PubMed ID: 28338047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmanned Aircraft Systems complement biologging in spatial ecology studies.
    Mulero-Pázmány M; Barasona JÁ; Acevedo P; Vicente J; Negro JJ
    Ecol Evol; 2015 Nov; 5(21):4808-18. PubMed ID: 26640661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.
    Hodgson JC; Koh LP
    Curr Biol; 2016 May; 26(10):R404-5. PubMed ID: 27218843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sense and avoid requirements for unmanned aircraft systems using a target level of safety approach.
    Melnyk R; Schrage D; Volovoi V; Jimenez H
    Risk Anal; 2014 Oct; 34(10):1894-906. PubMed ID: 24724619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Response and Injury Resulting from Head Impacts with Unmanned Aircraft Systems.
    Stark DB; Willis AK; Eshelman Z; Kang YS; Ramachandra R; Bolte JH; McCrink M
    Stapp Car Crash J; 2019 Nov; 63():29-64. PubMed ID: 32311051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.
    Brady JM; Stokes MD; Bonnardel J; Bertram TH
    Environ Sci Technol; 2016 Feb; 50(3):1376-83. PubMed ID: 26730457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmanned aircraft systems for studying spatial abundance of ungulates: relevance to spatial epidemiology.
    Barasona JA; Mulero-Pázmány M; Acevedo P; Negro JJ; Torres MJ; Gortázar C; Vicente J
    PLoS One; 2014; 9(12):e115608. PubMed ID: 25551673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Governance of Unmanned Aircraft Systems (UAS): Aviation Law, Human Rights, and the Free Movement of Data in the EU.
    Pagallo U; Bassi E
    Minds Mach (Dordr); 2020; 30(3):439-455. PubMed ID: 32929305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating satellite and unmanned aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China.
    Wang D; Song Q; Liao X; Ye H; Shao Q; Fan J; Cong N; Xin X; Yue H; Zhang H
    Sci Total Environ; 2020 Dec; 746():140327. PubMed ID: 32768776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.