These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28636684)

  • 1. Balanced work function as a driver for facile hydrogen evolution reaction - comprehension and experimental assessment of interfacial catalytic descriptor.
    Zeradjanin AR; Vimalanandan A; Polymeros G; Topalov AA; Mayrhofer KJJ; Rohwerder M
    Phys Chem Chem Phys; 2017 Jul; 19(26):17019-17027. PubMed ID: 28636684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of water in the chlorine evolution reaction at RuO(2)-based electrodes--understanding electrocatalysis as a resonance phenomenon.
    Zeradjanin AR; Menzel N; Strasser P; Schuhmann W
    ChemSusChem; 2012 Oct; 5(10):1897-904. PubMed ID: 22893626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.
    Wang VC
    Phys Chem Chem Phys; 2016 Aug; 18(32):22364-72. PubMed ID: 27460039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrolyte-Dependent Oxygen Evolution Reactions in Alkaline Media: Electrical Double Layer and Interfacial Interactions.
    Li GF; Divinagracia M; Labata MF; Ocon JD; Abel Chuang PY
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33748-33758. PubMed ID: 31436074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theories for Electrolyte Effects in CO
    Xu A; Govindarajan N; Kastlunger G; Vijay S; Chan K
    Acc Chem Res; 2022 Feb; 55(4):495-503. PubMed ID: 35107967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.
    Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y
    Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene.
    Seo S; Lee K; Min M; Cho Y; Kim M; Lee H
    Nanoscale; 2017 Mar; 9(11):3969-3979. PubMed ID: 28266680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction.
    Shen LF; Lu BA; Li YY; Liu J; Huang-Fu ZC; Peng H; Ye JY; Qu XM; Zhang JM; Li G; Cai WB; Jiang YX; Sun SG
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22397-22402. PubMed ID: 32893447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical role of hydrogen sorption kinetics in electrocatalytic CO
    Mu Z; Han N; Xu D; Tian B; Wang F; Wang Y; Sun Y; Liu C; Zhang P; Wu X; Li Y; Ding M
    Nat Commun; 2022 Nov; 13(1):6911. PubMed ID: 36376324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated interfacial proton transfer for promoting electrocatalytic activity.
    Deng KC; Lu ZX; Sun JJ; Ye JY; Dong F; Su HS; Yang K; Sartin MM; Yan S; Cheng J; Zhou ZY; Ren B
    Chem Sci; 2022 Sep; 13(36):10884-10890. PubMed ID: 36320703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How absorbed hydrogen affects the catalytic activity of transition metals.
    Aleksandrov HA; Kozlov SM; Schauermann S; Vayssilov GN; Neyman KM
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13371-5. PubMed ID: 25294745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene.
    Kirk C; Chen LD; Siahrostami S; Karamad M; Bajdich M; Voss J; Nørskov JK; Chan K
    ACS Cent Sci; 2017 Dec; 3(12):1286-1293. PubMed ID: 29296669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Nature of Hydrated Protons on Platinum Surfaces.
    Kim Y; Noh C; Jung Y; Kang H
    Chemistry; 2017 Dec; 23(69):17566-17575. PubMed ID: 28925104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding trends in electrochemical carbon dioxide reduction rates.
    Liu X; Xiao J; Peng H; Hong X; Chan K; Nørskov JK
    Nat Commun; 2017 May; 8():15438. PubMed ID: 28530224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Confidence in DFT-Predicted Surface Pourbaix Diagrams of Transition-Metal Electrode-Electrolyte Interfaces.
    Vinogradova O; Krishnamurthy D; Pande V; Viswanathan V
    Langmuir; 2018 Oct; 34(41):12259-12269. PubMed ID: 30240564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory.
    Zheng Y; Jiao Y; Jaroniec M; Qiao SZ
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):52-65. PubMed ID: 25384712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.