BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 28637217)

  • 1. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster.
    Camus MF; Wolff JN; Sgrò CM; Dowling DK
    Mol Biol Evol; 2017 Oct; 34(10):2600-2612. PubMed ID: 28637217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection.
    Yang Y; Edery I
    PLoS Genet; 2018 Sep; 14(9):e1007612. PubMed ID: 30180162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evidence that thermal selection shapes mitochondrial genome evolution.
    Lajbner Z; Pnini R; Camus MF; Miller J; Dowling DK
    Sci Rep; 2018 Jun; 8(1):9500. PubMed ID: 29934612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster.
    Cockerell FE; Sgrò CM; McKechnie SW
    J Insect Physiol; 2014 Jan; 60():136-44. PubMed ID: 24333150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex-specific effects of mitochondrial haplotype on metabolic rate in
    Nagarajan-Radha V; Aitkenhead I; Clancy DJ; Chown SL; Dowling DK
    Philos Trans R Soc Lond B Biol Sci; 2020 Jan; 375(1790):20190178. PubMed ID: 31787038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel Evolution of Cold Tolerance within Drosophila melanogaster.
    Pool JE; Braun DT; Lack JB
    Mol Biol Evol; 2017 Feb; 34(2):349-360. PubMed ID: 27777283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures.
    Gilchrist GW; Huey RB; Partridge L
    Physiol Zool; 1997; 70(4):403-14. PubMed ID: 9237300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous-collared sparrows (Zonotrichia capensis) along an elevational gradient.
    Cheviron ZA; Brumfield RT
    Evolution; 2009 Jun; 63(6):1593-605. PubMed ID: 19187247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia.
    Hoffmann AA; Weeks AR
    Genetica; 2007 Feb; 129(2):133-47. PubMed ID: 16955331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula.
    Fontanillas P; Dépraz A; Giorgi MS; Perrin N
    Mol Ecol; 2005 Feb; 14(2):661-70. PubMed ID: 15660955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stage-specific genotype-by-environment interactions for cold and heat hardiness in Drosophila melanogaster.
    Freda PJ; Ali ZM; Heter N; Ragland GJ; Morgan TJ
    Heredity (Edinb); 2019 Oct; 123(4):479-491. PubMed ID: 31164731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Wegener B; Weeks AR; Sgró CM
    J Evol Biol; 2012 Sep; 25(9):1765-78. PubMed ID: 22775577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA
    J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latitudinal and cold-tolerance variation associate with DNA repeat-number variation in the hsr-omega RNA gene of Drosophila melanogaster.
    Collinge JE; Anderson AR; Weeks AR; Johnson TK; McKechnie SW
    Heredity (Edinb); 2008 Sep; 101(3):260-70. PubMed ID: 18560441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster.
    Williams BR; VAN Heerwaarden B; Dowling DK; Sgrò CM
    J Evol Biol; 2012 Jul; 25(7):1415-26. PubMed ID: 22587877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster.
    Kellermann V; Hoffmann AA; Kristensen TN; Moghadam NN; Loeschcke V
    Am Nat; 2015 Nov; 186(5):582-93. PubMed ID: 26655772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions.
    Kimura MT
    Oecologia; 2004 Aug; 140(3):442-9. PubMed ID: 15221433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.