BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 28637759)

  • 1. Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation.
    Kurapati S; Sadaoka T; Rajbhandari L; Jagdish B; Shukla P; Ali MA; Kim YJ; Lee G; Cohen JI; Venkatesan A
    J Virol; 2017 Sep; 91(17):. PubMed ID: 28637759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current In Vitro Models to Study Varicella Zoster Virus Latency and Reactivation.
    Baird NL; Zhu S; Pearce CM; Viejo-Borbolla A
    Viruses; 2019 Jan; 11(2):. PubMed ID: 30691086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons.
    Markus A; Lebenthal-Loinger I; Yang IH; Kinchington PR; Goldstein RS
    PLoS Pathog; 2015 Jun; 11(6):e1004885. PubMed ID: 26042814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection.
    Sadaoka T; Schwartz CL; Rajbhandari L; Venkatesan A; Cohen JI
    J Virol; 2018 Jan; 92(1):. PubMed ID: 29046461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.
    Kennedy PG; Rovnak J; Badani H; Cohrs RJ
    J Gen Virol; 2015 Jul; 96(Pt 7):1581-602. PubMed ID: 25794504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nectin-1 Is an Entry Mediator for Varicella-Zoster Virus Infection of Human Neurons.
    Rajbhandari L; Shukla P; Jagdish B; Mandalla A; Li Q; Ali MA; Lee H; Lee G; Sadaoka T; Cohen JI; Venkatesan A
    J Virol; 2021 Oct; 95(22):e0122721. PubMed ID: 34468169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varicella-Zoster Virus Infection of Neurons Derived from Neural Stem Cells.
    Kennedy PGE; Mogensen TH
    Viruses; 2021 Mar; 13(3):. PubMed ID: 33804210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency.
    Sadaoka T; Depledge DP; Rajbhandari L; Venkatesan A; Breuer J; Cohen JI
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):E2403-12. PubMed ID: 27078099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granzyme B Cleaves Multiple Herpes Simplex Virus 1 and Varicella-Zoster Virus (VZV) Gene Products, and VZV ORF4 Inhibits Natural Killer Cell Cytotoxicity.
    Gerada C; Steain M; Campbell TM; McSharry B; Slobedman B; Abendroth A
    J Virol; 2019 Nov; 93(22):. PubMed ID: 31462576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varicella-zoster virus latency in human ganglia.
    Kennedy PG
    Rev Med Virol; 2002; 12(5):327-34. PubMed ID: 12211045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Varicella zoster virus: natural history and current therapies of varicella and herpes zoster.
    Breuer J; Whitley R
    Herpes; 2007 Sep; 14 Suppl 2():25-9. PubMed ID: 17939892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility of ultra-deep sequencing for detection of varicella-zoster virus antiviral resistance mutations.
    Mercier-Darty M; Boutolleau D; Lepeule R; Rodriguez C; Burrel S
    Antiviral Res; 2018 Mar; 151():20-23. PubMed ID: 29337163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varicella-Zoster Virus Activates CREB, and Inhibition of the pCREB-p300/CBP Interaction Inhibits Viral Replication In Vitro and Skin Pathogenesis In Vivo.
    François S; Sen N; Mitton B; Xiao X; Sakamoto KM; Arvin A
    J Virol; 2016 Oct; 90(19):8686-97. PubMed ID: 27440893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VZV infection of keratinocytes: production of cell-free infectious virions in vivo.
    Gershon MD; Gershon AA
    Curr Top Microbiol Immunol; 2010; 342():173-88. PubMed ID: 20225011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons.
    Gershon AA; Chen J; Gershon MD
    J Infect Dis; 2008 Mar; 197 Suppl 2():S61-5. PubMed ID: 18419411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and therapeutic aspects of varicella-zoster virus infection.
    Quinlivan M; Breuer J
    Expert Rev Mol Med; 2005 Aug; 7(15):1-24. PubMed ID: 16098235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Varicella Zoster Virus Neuronal Latency and Reactivation Modeled in Vitro.
    Goldstein RS; Kinchington PR
    Curr Top Microbiol Immunol; 2023; 438():103-134. PubMed ID: 34904194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose.
    Sloutskin A; Kinchington PR; Goldstein RS
    Virology; 2013 Sep; 443(2):285-93. PubMed ID: 23769240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts.
    Zerboni L; Reichelt M; Arvin A
    Curr Top Microbiol Immunol; 2010; 342():255-76. PubMed ID: 20225014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells.
    Jiang HF; Wang W; Jiang X; Zeng WB; Shen ZZ; Song YG; Yang H; Liu XJ; Dong X; Zhou J; Sun JY; Yu FL; Guo L; Cheng T; Rayner S; Zhao F; Zhu H; Luo MH
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28356523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.