These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
633 related articles for article (PubMed ID: 28638054)
1. Drug-Repositioning Screening for Keap1-Nrf2 Binding Inhibitors using Fluorescence Correlation Spectroscopy. Yoshizaki Y; Mori T; Ishigami-Yuasa M; Kikuchi E; Takahashi D; Zeniya M; Nomura N; Mori Y; Araki Y; Ando F; Mandai S; Kasagi Y; Arai Y; Sasaki E; Yoshida S; Kagechika H; Rai T; Uchida S; Sohara E Sci Rep; 2017 Jun; 7(1):3945. PubMed ID: 28638054 [TBL] [Abstract][Full Text] [Related]
2. Monoacidic Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction with High Cell Potency Identified by Fragment-Based Discovery. Davies TG; Wixted WE; Coyle JE; Griffiths-Jones C; Hearn K; McMenamin R; Norton D; Rich SJ; Richardson C; Saxty G; Willems HM; Woolford AJ; Cottom JE; Kou JP; Yonchuk JG; Feldser HG; Sanchez Y; Foley JP; Bolognese BJ; Logan G; Podolin PL; Yan H; Callahan JF; Heightman TD; Kerns JK J Med Chem; 2016 Apr; 59(8):3991-4006. PubMed ID: 27031670 [TBL] [Abstract][Full Text] [Related]
3. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166 [TBL] [Abstract][Full Text] [Related]
4. Drug screening assay based on the interaction of intact Keap1 and Nrf2 proteins in cancer cells. Zhou B; Zhang X; Wang G; Barbour KW; Berger FG; Wang Q Bioorg Med Chem; 2019 Jan; 27(1):92-99. PubMed ID: 30473361 [TBL] [Abstract][Full Text] [Related]
5. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Iso T; Suzuki T; Baird L; Yamamoto M Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860 [TBL] [Abstract][Full Text] [Related]
6. A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2. Qiu L; Wang M; Zhu Y; Xiang Y; Zhang Y Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042301 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Taguchi K; Motohashi H; Yamamoto M Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164 [TBL] [Abstract][Full Text] [Related]
8. Tetrachlorobenzoquinone activates Nrf2 signaling by Keap1 cross-linking and ubiquitin translocation but not Keap1-Cullin3 complex dissociation. Su C; Zhang P; Song X; Shi Q; Fu J; Xia X; Bai H; Hu L; Xu D; Song E; Song Y Chem Res Toxicol; 2015 Apr; 28(4):765-74. PubMed ID: 25742418 [TBL] [Abstract][Full Text] [Related]
9. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Vriend J; Reiter RJ Mol Cell Endocrinol; 2015 Feb; 401():213-20. PubMed ID: 25528518 [TBL] [Abstract][Full Text] [Related]
10. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Baird L; Yamamoto M Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348 [TBL] [Abstract][Full Text] [Related]
11. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
12. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. Suzuki T; Yamamoto M J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501 [TBL] [Abstract][Full Text] [Related]
13. Identification of an adaptor protein that facilitates Nrf2-Keap1 complex formation and modulates antioxidant response. Zhang Y; Hou Y; Liu C; Li Y; Guo W; Wu JL; Xu D; You X; Pan Y; Chen Y Free Radic Biol Med; 2016 Aug; 97():38-49. PubMed ID: 27212020 [TBL] [Abstract][Full Text] [Related]
14. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Sun Z; Zhang S; Chan JY; Zhang DD Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022 [TBL] [Abstract][Full Text] [Related]
15. Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in Primary Biliary Cholangitis. Wasik U; Milkiewicz M; Kempinska-Podhorodecka A; Milkiewicz P Sci Rep; 2017 Mar; 7():44769. PubMed ID: 28333129 [TBL] [Abstract][Full Text] [Related]
16. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775 [TBL] [Abstract][Full Text] [Related]
17. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells. Georgiou-Siafis SK; Tsiftsoglou AS Biochem Pharmacol; 2020 May; 175():113900. PubMed ID: 32156661 [TBL] [Abstract][Full Text] [Related]
18. Sp1 is a substrate of Keap1 and regulates the activity of CRL4A Siswanto FM; Oguro A; Imaoka S J Biol Chem; 2021; 296():100704. PubMed ID: 33895141 [TBL] [Abstract][Full Text] [Related]
19. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. Madden SK; Itzhaki LS Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140405. PubMed ID: 32120017 [TBL] [Abstract][Full Text] [Related]
20. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. McMahon M; Swift SR; Hayes JD Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]