These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28638145)

  • 1. A sacrificial layer strategy for photolithography on highly hydrophobic surface and its application for electrowetting devices.
    Zhang H; Yan Q; Xu Q; Xiao C; Liang X
    Sci Rep; 2017 Jun; 7(1):3983. PubMed ID: 28638145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile.
    Kim TJ; Jung YH; Zhang H; Kim K; Lee J; Ma Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8117-8123. PubMed ID: 29345131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact Photolithography at Sub-Micrometer Scale Using a Soft Photomask.
    Wu CY; Hsieh H; Lee YC
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a three-layer SU-8 mould with inverted T-shaped cavities based on a sacrificial photoresist layer technique.
    Liu J; Zhang D; Sha B; Yin P; Xu Z; Liu C; Wang L; Xu F; Wang L
    Biomed Microdevices; 2014 Oct; 16(5):655-60. PubMed ID: 24850230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet-Printed Dielectric Layer for the Enhancement of Electrowetting Display Devices.
    Jiang H; Qian R; Yang T; Guo Y; Yuan D; Tang B; Zhou R; Li H; Zhou G
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein patterning using germanium as a sacrificial layer.
    Bochao Lu ; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1865-1868. PubMed ID: 29060254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.
    Park CW; Moon YG; Seong H; Jung SW; Oh JY; Na BS; Park NM; Lee SS; Im SG; Koo JB
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15459-65. PubMed ID: 27250997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-Effective Fabrication of Inner-Porous Micro/Nano Carbon Structures.
    Jiang S; Shi T; Tang Z; Xi S
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2089-2095. PubMed ID: 29448719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography.
    Asano H; Shiraishi Y
    Anal Chim Acta; 2015 Jul; 883():55-60. PubMed ID: 26088776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers Using the Grayscale Photolithography Technique.
    Abdul Hamid ISL; Khi Khim B; Sal Hamid S; Abd Rahman MF; Abd Manaf A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32485795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actuation of digital micro drops by electrowetting on open microfluidic chips fabricated in photolithography.
    Ko H; Lee JS; Jung CH; Choi JH; Kwon OS; Shin K
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5894-7. PubMed ID: 25936023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rolled-up-based fabrication method of 3D helical microrobots.
    Wang Z; Mu X; Tan L; Zhong Y; Cheang UK
    Front Robot AI; 2022; 9():1063987. PubMed ID: 36523446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hard-Baked Photoresist as a Sacrificial Layer for Sub-180 °C Surface Micromachining Processes.
    Tawfik HH; Elsayed MY; Nabki F; El-Gamal MN
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planar thin film device for capillary electrophoresis.
    Peeni BA; Conkey DB; Barber JP; Kelly RT; Lee ML; Woolley AT; Hawkins AR
    Lab Chip; 2005 May; 5(5):501-5. PubMed ID: 15856085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of metallic microstructures using exposed, developed silver halide-based photographic film.
    Deng T; Arias F; Ismagilov RF; Kenis PJ; Whitesides GM
    Anal Chem; 2000 Feb; 72(4):645-51. PubMed ID: 10701246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sacrificial Layer Technique for Releasing Metallized Multilayer SU-8 Devices.
    Tatikonda A; Jokinen VP; Evard H; Franssila S
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30572576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolithography Fabricated Spacer Arrays Offering Mechanical Strengthening and Oil Motion Control in Electrowetting Displays.
    Dou Y; Chen L; Li H; Tang B; Henzen A; Zhou G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system.
    Ji J; Hu Y; Meng Y; Zhang J; Xu J; Li S; Yang G
    Nanotechnology; 2016 May; 27(18):185303. PubMed ID: 27010406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.