These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 28638159)
1. In Vitro Evaluation of the Fresenius Kabi CATSmart Autotransfusion System. Alberts M; Groom RC; Walczak R; Kramer R; Karpiel A; Dieter J; Sheth L; Greene NH; Jooste EH J Extra Corpor Technol; 2017 Jun; 49(2):107-111. PubMed ID: 28638159 [TBL] [Abstract][Full Text] [Related]
2. Performance of a new-generation continuous autotransfusion device including fat removal and consequences for quality controls. Seyfried TF; Gruber M; Bitzinger D; Pawlik MT; Breu A; Graf BM; Hansen E Transfus Med; 2017 Aug; 27(4):292-299. PubMed ID: 28524547 [TBL] [Abstract][Full Text] [Related]
3. Fat removal during cell salvage: an optimized program for a discontinuous autotransfusion device. Seyfried TF; Gruber M; Breu A; Aumeier C; Zech N; Hansen E Transfusion; 2016 Jan; 56(1):153-9. PubMed ID: 26331951 [TBL] [Abstract][Full Text] [Related]
4. Cell salvage using the continuous autotransfusion device CATSmart - an observational bicenter technical evaluation. Lindau S; Kohlhaas M; Nosch M; Choorapoikayil S; Zacharowski K; Meybohm P BMC Anesthesiol; 2018 Dec; 18(1):189. PubMed ID: 30541447 [TBL] [Abstract][Full Text] [Related]
5. Processing of small volumes in blood salvage devices. Seyfried T; Breu A; Gruber M; Reipert J; Hansen E Transfusion; 2014 Oct; 54(10 Pt 2):2775-81. PubMed ID: 24953124 [TBL] [Abstract][Full Text] [Related]
6. Comparison of three autotransfusion devices for utilization in the pediatric population. Melchior RW; Dreher M; Shade B; Chappell A; Fisher D; Rosenthal T Perfusion; 2021 Jan; 36(1):57-62. PubMed ID: 32475210 [TBL] [Abstract][Full Text] [Related]
7. The impact of bowl size, program setup, and blood hematocrit on the performance of a discontinuous autotransfusion system. Seyfried TF; Gruber M; Streithoff F; Mandle RJ; Pawlik MT; Busse H; Hansen E Transfusion; 2017 Mar; 57(3):589-598. PubMed ID: 28233319 [TBL] [Abstract][Full Text] [Related]
8. Washing of banked blood by three different blood salvage devices. Gruber M; Breu A; Frauendorf M; Seyfried T; Hansen E Transfusion; 2013 May; 53(5):1001-9. PubMed ID: 22897672 [TBL] [Abstract][Full Text] [Related]
9. Quality of red blood cells using autotransfusion devices: a comparative analysis. Serrick CJ; Scholz M; Melo A; Singh O; Noel D J Extra Corpor Technol; 2003 Mar; 35(1):28-34. PubMed ID: 12680493 [TBL] [Abstract][Full Text] [Related]
10. Quality of red blood cells using the Dideco Electa autotransfusion device. Melo A; Serrick CJ; Scholz M; Singh O; Noel D J Extra Corpor Technol; 2005 Mar; 37(1):58-9. PubMed ID: 15804159 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the minimum volume of salvage blood required for the successful use of two different autotransfusion devices. Baumann C; Lamesic G; Weiss M; Cushing MM; Haas T Paediatr Anaesth; 2015 Mar; 25(3):258-64. PubMed ID: 25267461 [TBL] [Abstract][Full Text] [Related]
12. Quality evaluation of the emergency program of three contemporary cell-washing machines. De Somer F; Bernolet H; Bouchez S; Bové T Perfusion; 2019 May; 34(4):318-322. PubMed ID: 30628532 [TBL] [Abstract][Full Text] [Related]
13. Effect of partial-filling autotransfusion bowls on the quality of reinfused product. Tremain KD; Stammers AH; Niimi KS; Glogowski KR; Muhle ML; Trowbridge CC; Yang T J Extra Corpor Technol; 2001 May; 33(2):80-5. PubMed ID: 11467441 [TBL] [Abstract][Full Text] [Related]
14. [Post-operative retransfusion and intra-operative autotransfusion systems in total knee arthroplasty. A comparison of their efficacy]. Kučera B; Náhlík D; Hart R; Oceláková L Acta Chir Orthop Traumatol Cech; 2012; 79(4):361-6. PubMed ID: 22980936 [TBL] [Abstract][Full Text] [Related]
15. Use of an autologous blood recovery system during emergency pericardiocentesis in the electrophysiology laboratory. Venkatachalam KL; Fanning LJ; Willis EA; Beinborn DS; Bradley DJ; Cha YM; Shen WK; Asirvatham SJ; Sinak LJ; Packer DL; Munger TM; Santrach PJ; Friedman PA J Cardiovasc Electrophysiol; 2009 Mar; 20(3):280-3. PubMed ID: 19261039 [TBL] [Abstract][Full Text] [Related]
16. Processing of stored packed red blood cells using autotransfusion devices decreases potassium and microaggregates: a prospective, randomized, single-blinded in vitro study. Westphal-Varghese B; Erren M; Westphal M; Van Aken H; Ertmer C; Lange M; Booke M Transfus Med; 2007 Apr; 17(2):89-95. PubMed ID: 17430464 [TBL] [Abstract][Full Text] [Related]
17. Levels of inflammatory markers in the blood processed by autotransfusion devices during cardiac surgery associated with cardiopulmonary bypass circuit. Amand T; Pincemail J; Blaffart F; Larbuisson R; Limet R; Defraigne JO Perfusion; 2002 Mar; 17(2):117-23. PubMed ID: 11958302 [TBL] [Abstract][Full Text] [Related]
18. A simulation study for the design of a control system for the blood concentration process in autotransfusion. Ruggeri A; Comai G; Belloni M; Zanella A Ann Biomed Eng; 2000 Apr; 28(4):470-82. PubMed ID: 10870904 [TBL] [Abstract][Full Text] [Related]
19. Clinical evaluation of the Sorin Xtra(R) Autotransfusion System. Overdevest EP; Lanen PW; Feron JC; van Hees JW; Tan ME Perfusion; 2012 Jul; 27(4):278-83. PubMed ID: 22460925 [TBL] [Abstract][Full Text] [Related]
20. Is use of a Continuous Autotransfusion System beneficial in emergency abdominal aortic aneursym (AAA) surgery? Brown CN; Hakim C; Sayers RD; London NJ; Nasim A Ann Vasc Surg; 2011 May; 25(4):481-4. PubMed ID: 21549916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]