BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28638238)

  • 1. A Computational Methodology to Overcome the Challenges Associated With the Search for Specific Enzyme Targets to Develop Drugs Against
    Catharina L; Lima CR; Franca A; Guimarães ACR; Alves-Ferreira M; Tuffery P; Derreumaux P; Carels N
    Bioinform Biol Insights; 2017; 11():1177932217712471. PubMed ID: 28638238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.
    Capriles PV; Baptista LP; Guedes IA; Guimarães AC; Custódio FL; Alves-Ferreira M; Dardenne LE
    J Mol Graph Model; 2015 Feb; 55():134-47. PubMed ID: 25528729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AnEnPi: identification and annotation of analogous enzymes.
    Otto TD; Guimarães AC; Degrave WM; de Miranda AB
    BMC Bioinformatics; 2008 Dec; 9():544. PubMed ID: 19091081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific and nonhomologous isofunctional enzymes of the genetic information processing pathways as potential therapeutical targets for tritryps.
    Gomes MR; Guimarães AC; de Miranda AB
    Enzyme Res; 2011; 2011():543912. PubMed ID: 21808726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Bora N; Jha AN
    Front Genet; 2020; 11():179. PubMed ID: 32211028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiparasitic chemotherapy: tinkering with the purine salvage pathway.
    Datta AK; Datta R; Sen B
    Adv Exp Med Biol; 2008; 625():116-32. PubMed ID: 18365663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dataset generated for Dissection of mechanisms of Trypanothione Reductase and Tryparedoxin Peroxidase through dynamic network analysis and simulations in leishmaniasis.
    Kumar A; Saha B; Singh S
    Data Brief; 2017 Dec; 15():757-769. PubMed ID: 29159213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of sequence homologies in plant and bacterial pyruvate phosphate dikinase, enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and other PEP-utilizing enzymes. Identification of potential catalytic and regulatory motifs.
    Pocalyko DJ; Carroll LJ; Martin BM; Babbitt PC; Dunaway-Mariano D
    Biochemistry; 1990 Dec; 29(48):10757-65. PubMed ID: 2176881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamine metabolism in Leishmania: from arginine to trypanothione.
    Colotti G; Ilari A
    Amino Acids; 2011 Feb; 40(2):269-85. PubMed ID: 20512387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orphan enzymes could be an unexplored reservoir of new drug targets.
    Lespinet O; Labedan B
    Drug Discov Today; 2006 Apr; 11(7-8):300-5. PubMed ID: 16580971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Trypanothione Reductase of Leishmanial major to Fight Against Cutaneous Leishmaniasis.
    Dukhyil AAAB
    Infect Disord Drug Targets; 2019; 19(4):388-393. PubMed ID: 29732996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway analysis of S. pneumoniae: an in silico approach towards drug-design.
    Singh S; Malik BK; Sharma DK
    J Bioinform Comput Biol; 2007 Feb; 5(1):135-53. PubMed ID: 17477495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K; Khan W; Azam SS; Wadood A
    Gene; 2015 Feb; 556(2):213-26. PubMed ID: 25436466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers.
    Ryu JY; Kim HU; Lee SY
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13996-14001. PubMed ID: 31221760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology modeling of T. cruzi and L. major NADH-dependent fumarate reductases: ligand docking, molecular dynamics validation, and insights on their binding modes.
    Merlino A; Vieites M; Gambino D; Coitiño EL
    J Mol Graph Model; 2014 Mar; 48():47-59. PubMed ID: 24370672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine-trypanothione pathway: an update.
    Ilari A; Fiorillo A; Genovese I; Colotti G
    Future Med Chem; 2017 Jan; 9(1):61-77. PubMed ID: 27957878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.