These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 28638395)
1. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Zandalinas SI; Balfagón D; Arbona V; Gómez-Cadenas A Front Plant Sci; 2017; 8():953. PubMed ID: 28638395 [TBL] [Abstract][Full Text] [Related]
2. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Balfagón D; Zandalinas SI; Baliño P; Muriach M; Gómez-Cadenas A Plant Physiol Biochem; 2018 Jun; 127():194-199. PubMed ID: 29609175 [TBL] [Abstract][Full Text] [Related]
3. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. Zandalinas SI; Rivero RM; Martínez V; Gómez-Cadenas A; Arbona V BMC Plant Biol; 2016 Apr; 16():105. PubMed ID: 27121193 [TBL] [Abstract][Full Text] [Related]
4. Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures. Zandalinas SI; Sales C; Beltrán J; Gómez-Cadenas A; Arbona V Front Plant Sci; 2016; 7():1954. PubMed ID: 28119698 [TBL] [Abstract][Full Text] [Related]
5. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Balfagón D; Terán F; de Oliveira TDR; Santa-Catarina C; Gómez-Cadenas A Plant Cell Rep; 2022 Mar; 41(3):593-602. PubMed ID: 34232376 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Arbona V; Hossain Z; López-Climent MF; Pérez-Clemente RM; Gómez-Cadenas A Physiol Plant; 2008 Apr; 132(4):452-66. PubMed ID: 18333999 [TBL] [Abstract][Full Text] [Related]
7. 5-Aminolevulinic acid modulates antioxidant defense systems and mitigates drought-induced damage in Kentucky bluegrass seedlings. Niu K; Ma X; Liang G; Ma H; Jia Z; Liu W; Yu Q Protoplasma; 2017 Nov; 254(6):2083-2094. PubMed ID: 28321653 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant and photosystem II responses contribute to explain the drought-heat contrasting tolerance of two forage legumes. Signorelli S; Casaretto E; Sainz M; Díaz P; Monza J; Borsani O Plant Physiol Biochem; 2013 Sep; 70():195-203. PubMed ID: 23792824 [TBL] [Abstract][Full Text] [Related]
9. Omics analyses in citrus reveal a possible role of RNA translation pathways and Unfolded Protein Response regulators in the tolerance to combined drought, high irradiance, and heat stress. Balfagón D; Zandalinas SI; Dos Reis de Oliveira T; Santa-Catarina C; Gómez-Cadenas A Hortic Res; 2023 Jul; 10(7):uhad107. PubMed ID: 37577403 [TBL] [Abstract][Full Text] [Related]
10. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Torun H Physiol Plant; 2019 Feb; 165(2):169-182. PubMed ID: 29984429 [TBL] [Abstract][Full Text] [Related]
11. Reduction of heat stress pressure and activation of photosystem II repairing system are crucial for citrus tolerance to multiple abiotic stress combination. Balfagón D; Zandalinas SI; Dos Reis de Oliveira T; Santa-Catarina C; Gómez-Cadenas A Physiol Plant; 2022 Nov; 174(6):e13809. PubMed ID: 36309819 [TBL] [Abstract][Full Text] [Related]
13. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Mishra N; Jiang C; Chen L; Paul A; Chatterjee A; Shen G Front Plant Sci; 2023; 14():1110622. PubMed ID: 37332720 [TBL] [Abstract][Full Text] [Related]
14. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Chugh V; Kaur N; Grewal MS; Gupta AK Indian J Biochem Biophys; 2013 Apr; 50(2):150-8. PubMed ID: 23720889 [TBL] [Abstract][Full Text] [Related]
15. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Hasanuzzaman M; Fujita M Biol Trace Elem Res; 2011 Dec; 143(3):1758-76. PubMed ID: 21347652 [TBL] [Abstract][Full Text] [Related]
16. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Nahar K; Hasanuzzaman M; Alam MM; Rahman A; Mahmud JA; Suzuki T; Fujita M Protoplasma; 2017 Jan; 254(1):445-460. PubMed ID: 27032937 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Chugh V; Kaur N; Gupta AK Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Arbona V; Flors V; Jacas J; García-Agustín P; Gómez-Cadenas A Plant Cell Physiol; 2003 Apr; 44(4):388-94. PubMed ID: 12721379 [TBL] [Abstract][Full Text] [Related]
19. Modulating the antioxidant system by exogenous 2-(3,4-dichlorophenoxy) triethylamine in maize seedlings exposed to polyethylene glycol-simulated drought stress. Xie T; Gu W; Zhang L; Li L; Qu D; Li C; Meng Y; Li J; Wei S; Li W PLoS One; 2018; 13(9):e0203626. PubMed ID: 30183770 [TBL] [Abstract][Full Text] [Related]