These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28638483)

  • 1. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.
    Wen L; Yang S; Zhong J; Zhou Q; Xing D
    Theranostics; 2017; 7(7):1976-1989. PubMed ID: 28638483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.
    Wen L; Ding W; Yang S; Xing D
    Biomaterials; 2016 Jan; 75():163-173. PubMed ID: 26513410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection.
    Nie L; Ou Z; Yang S; Xing D
    Med Phys; 2010 Aug; 37(8):4193-200. PubMed ID: 20879580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancreatic Cancer detection via Galectin-1-targeted Thermoacoustic Imaging: validation in an
    Qin H; Qin B; Yuan C; Chen Q; Xing D
    Theranostics; 2020; 10(20):9172-9185. PubMed ID: 32802185
    [No Abstract]   [Full Text] [Related]  

  • 5. Manganous-manganic oxide nanoparticle as an activatable microwave-induced thermoacoustic probe for deep-located tumor specific imaging
    Zhang S; Li W; Chen X; Ren M; Zhang H; Xing D; Qin H
    Photoacoustics; 2022 Jun; 26():100347. PubMed ID: 35345808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stimulated liquid-gas phase transition nanoprobe dedicated to enhance the microwave thermoacoustic imaging contrast of breast tumors.
    Zhang L; Qin H; Zeng F; Wu Z; Wu L; Zhao S; Xing D
    Nanoscale; 2020 Aug; 12(30):16034-16040. PubMed ID: 32720966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explosible nanocapsules excited by pulsed microwaves for efficient thermoacoustic-chemo combination therapy.
    Wang Z; Zhang Y; Cao B; Ji Z; Luo W; Zhai S; Zhang D; Wang W; Xing D; Hu X
    Nanoscale; 2019 Jan; 11(4):1710-1719. PubMed ID: 30623943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling dielectric loss of biodegradable black phosphorus nanosheets by iron-ion-modification for imaging-guided microwave thermoacoustic therapy.
    Chen X; Zhang S; Liu J; Ren M; Xing D; Qin H
    Biomaterials; 2022 Aug; 287():121662. PubMed ID: 35797855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics.
    Li K; Nejadnik H; Daldrup-Link HE
    Drug Discov Today; 2017 Sep; 22(9):1421-1429. PubMed ID: 28454771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-efficient excitation-detection thermoacoustic imaging probe for breast tumor detection.
    Zhang H; Ren M; Wang Y; Qin H
    Med Phys; 2023 Mar; 50(3):1670-1679. PubMed ID: 36542398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model.
    Erdal E; Demirbilek M; Yeh Y; Akbal Ö; Ruff L; Bozkurt D; Cabuk A; Senel Y; Gumuskaya B; Algın O; Colak S; Esener S; Denkbas EB
    Appl Biochem Biotechnol; 2018 May; 185(1):91-113. PubMed ID: 29082480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target visualisation and microwave hyperthermia monitoring using nanoparticle-enhanced transmission ultrasound (NETUS).
    Perlman O; Weitz IS; Azhari H
    Int J Hyperthermia; 2018 Sep; 34(6):773-785. PubMed ID: 29063825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment.
    Yang SJ; Huang CH; Wang CH; Shieh MJ; Chen KC
    Int J Nanomedicine; 2020; 15():10331-10347. PubMed ID: 33376324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice.
    Ding W; Lou C; Qiu J; Zhao Z; Zhou Q; Liang M; Ji Z; Yang S; Xing D
    Nanomedicine; 2016 Jan; 12(1):235-44. PubMed ID: 26393884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects.
    Deh K; Zaman M; Vedvyas Y; Liu Z; Gillen KM; O' Malley P; Bedretdinova D; Nguyen T; Lee R; Spincemaille P; Kim J; Wang Y; Jin MM
    Sci Rep; 2020 Jan; 10(1):1171. PubMed ID: 31980695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.
    Dassler K; Roohi F; Lohrke J; Ide A; Remmele S; Hütter J; Pietsch H; Pison U; Schütz G
    Invest Radiol; 2012 Jul; 47(7):383-91. PubMed ID: 22659596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI.
    Zhang B; Yang B; Zhai C; Jiang B; Wu Y
    Biomaterials; 2013 Jul; 34(23):5843-52. PubMed ID: 23642536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor.
    Yuan C; Qin B; Qin H; Xing D
    Nanoscale; 2019 Nov; 11(46):22222-22229. PubMed ID: 31735945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Microwave-Induced Thermoacoustic Endoscopy for Colorectal Tumor Detection in Deep Tissue.
    Zhang H; Ren M; Wang Y; Jin Z; Zhang S; Liu J; Fu J; Qin H
    IEEE Trans Med Imaging; 2024 Apr; 43(4):1619-1627. PubMed ID: 38113149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy.
    Chen Q; Wang C; Zhan Z; He W; Cheng Z; Li Y; Liu Z
    Biomaterials; 2014 Sep; 35(28):8206-14. PubMed ID: 24957292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.