These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28638700)

  • 21. EEG-based auditory attention decoding using speech-level-based segmented computational models.
    Wang L; Wu EX; Chen F
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33957606
    [No Abstract]   [Full Text] [Related]  

  • 22. Factors influencing classification of frequency following responses to speech and music stimuli.
    Losorelli S; Kaneshiro B; Musacchia GA; Blevins NH; Fitzgerald MB
    Hear Res; 2020 Dec; 398():108101. PubMed ID: 33142106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
    Gilley PM; Uhler K; Watson K; Yoshinaga-Itano C
    BMC Neurosci; 2017 Mar; 18(1):34. PubMed ID: 28330464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intelligible speech encoded in the human brain stem frequency-following response.
    Galbraith GC; Arbagey PW; Branski R; Comerci N; Rector PM
    Neuroreport; 1995 Nov; 6(17):2363-7. PubMed ID: 8747154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits.
    Bidelman G; Powers L
    Int J Audiol; 2018 Sep; 57(9):665-672. PubMed ID: 29764252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.
    Digeser FM; Wohlberedt T; Hoppe U
    Ear Hear; 2009 Dec; 30(6):704-12. PubMed ID: 19672195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactive effects of linguistic abstraction and stimulus statistics in the online modulation of neural speech encoding.
    Lau JCY; Wong PCM; Chandrasekaran B
    Atten Percept Psychophys; 2019 May; 81(4):1020-1033. PubMed ID: 30565097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perception and neural representation of size-variant human vowels in the Mongolian gerbil (Meriones unguiculatus).
    Schebesch G; Lingner A; Firzlaff U; Wiegrebe L; Grothe B
    Hear Res; 2010 Mar; 261(1-2):1-8. PubMed ID: 20004713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetries in the processing of vowel height.
    Scharinger M; Monahan PJ; Idsardi WJ
    J Speech Lang Hear Res; 2012 Jun; 55(3):903-18. PubMed ID: 22232394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The representation of noise vocoded speech in the auditory nerve of the chinchilla: physiological correlates of the perception of spectrally reduced speech.
    Loebach JL; Wickesberg RE
    Hear Res; 2006 Mar; 213(1-2):130-44. PubMed ID: 16497455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency-Following Responses to Speech Sounds Are Highly Conserved across Species and Contain Cortical Contributions.
    Gnanateja GN; Rupp K; Llanos F; Remick M; Pernia M; Sadagopan S; Teichert T; Abel TJ; Chandrasekaran B
    eNeuro; 2021; 8(6):. PubMed ID: 34799409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications.
    Mirkovic B; Debener S; Jaeger M; De Vos M
    J Neural Eng; 2015 Aug; 12(4):046007. PubMed ID: 26035345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neural encoding of formant frequencies contributing to vowel identification in normal-hearing listeners.
    Won JH; Tremblay K; Clinard CG; Wright RA; Sagi E; Svirsky M
    J Acoust Soc Am; 2016 Jan; 139(1):1-11. PubMed ID: 26826999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory cortical activity to different voice onset times in cochlear implant users.
    Han JH; Zhang F; Kadis DS; Houston LM; Samy RN; Smith ML; Dimitrijevic A
    Clin Neurophysiol; 2016 Feb; 127(2):1603-1617. PubMed ID: 26616545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.
    Xie Z; Reetzke R; Chandrasekaran B
    Neuroscience; 2018 Aug; 384():64-75. PubMed ID: 29802881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topographic recordings of auditory evoked potentials to speech: subcortical and cortical responses.
    Bellier L; Bouchet P; Jeanvoine A; Valentin O; Thai-Van H; Caclin A
    Psychophysiology; 2015 Apr; 52(4):594-9. PubMed ID: 25329609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recording the human brainstem frequency-following-response in the free-field.
    Gama N; Peretz I; Lehmann A
    J Neurosci Methods; 2017 Mar; 280():47-53. PubMed ID: 28185890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulus rate and subcortical auditory processing of speech.
    Krizman JL; Skoe E; Kraus N
    Audiol Neurootol; 2010; 15(5):332-42. PubMed ID: 20215743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase-locked responses to the vowel envelope vary in scalp-recorded amplitude due to across-frequency response interactions.
    Easwar V; Banyard A; Aiken SJ; Purcell DW
    Eur J Neurosci; 2018 Nov; 48(10):3126-3145. PubMed ID: 30240514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exponential Modeling of Frequency-Following Responses in American Neonates and Adults.
    Jeng FC; Nance B; Montgomery-Reagan K; Lin CD
    J Am Acad Audiol; 2018 Feb; 29(2):125-134. PubMed ID: 29401060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.