These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 28638780)

  • 1. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.
    Wu Z; Li L; Yan JM; Zhang XB
    Adv Sci (Weinh); 2017 Jun; 4(6):1600382. PubMed ID: 28638780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.
    Lu C; Chen X
    Acc Chem Res; 2020 Aug; 53(8):1468-1477. PubMed ID: 32658447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercapacitors: An Efficient Way for Energy Storage Application.
    Czagany M; Hompoth S; Keshri AK; Pandit N; Galambos I; Gacsi Z; Baumli P
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors.
    Jin J; Geng X; Chen Q; Ren TL
    Nanomicro Lett; 2022 Feb; 14(1):64. PubMed ID: 35199258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments.
    Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications?
    Teymoory P; Zhao J; Shen C
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors.
    Du X; Lin Z; Wang X; Zhang K; Hu H; Dai S
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.
    Asghar A; Khan K; Hakami O; Alamier WM; Ali SK; Zelai T; Rashid MS; Tareen AK; Al-Harthi EA
    Front Chem; 2024; 12():1402563. PubMed ID: 38831913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
    Liu N; Gao Y
    Small; 2017 Dec; 13(45):. PubMed ID: 28976109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal chalcogenides for next-generation energy storage.
    Palchoudhury S; Ramasamy K; Han J; Chen P; Gupta A
    Nanoscale Adv; 2023 May; 5(10):2724-2742. PubMed ID: 37205287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors.
    Mahadik SM; Chodankar NR; Han YK; Dubal DP; Patil S
    ChemSusChem; 2021 Dec; 14(24):5384-5398. PubMed ID: 34643058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.
    Tundwal A; Kumar H; Binoj BJ; Sharma R; Kumar G; Kumari R; Dhayal A; Yadav A; Singh D; Kumar P
    RSC Adv; 2024 Mar; 14(14):9406-9439. PubMed ID: 38516158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.