These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 2863899)
1. Biotransformation of N-methylcyclobarbital in vivo in rabbit and rat. Miyano K; Shimodouzono Y; Toki S Xenobiotica; 1985 May; 15(5):381-9. PubMed ID: 2863899 [TBL] [Abstract][Full Text] [Related]
2. Carpipramine metabolism in the rat, rabbit and dog and in man after oral administration. Bieder A; Decouvelaere B; Gaillard C; Gaillot J; Depaire H; Raynaud L; Snozzi C Xenobiotica; 1985 May; 15(5):421-35. PubMed ID: 4036167 [TBL] [Abstract][Full Text] [Related]
3. The influence of cyclobarbital and diazepam on drug metabolism in vitro and their binding to cytochrome P-450. Wierzba W; Müller D; Richter K; Klinger W Biomed Biochim Acta; 1984; 43(12):1425-30. PubMed ID: 6152537 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo metabolism of desogestrel in several species. Verhoeven CH; Krebbers SF; Wagenaars GN; Vos RM Drug Metab Dispos; 1998 Sep; 26(9):927-36. PubMed ID: 9733673 [TBL] [Abstract][Full Text] [Related]
5. Development of a 19F-n.m.r. method for studies on the in vivo and in vitro metabolism of 2-fluoroaniline. Vervoort J; De Jager PA; Steenbergen J; Rietjens IM Xenobiotica; 1990 Jul; 20(7):657-70. PubMed ID: 2238701 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of barbiturates and the glucuronidation of 1-napthol in perfused rat liver and in microsomes. Bock KW Naunyn Schmiedebergs Arch Pharmacol; 1974; 283(3):319-30. PubMed ID: 4152424 [No Abstract] [Full Text] [Related]
7. Stereoselective formation of glucuronides in metabolism of hexobarbital enantiomers in vivo: isolation and quantitation of glucuronides in rabbit urine. Miyano K; Ota T; Toki S Drug Metab Dispos; 1981; 9(1):60-4. PubMed ID: 6111434 [TBL] [Abstract][Full Text] [Related]
8. Pharmacokinetics of simultaneously administered hexobarbital and heptabarbital in rats: an alternative approach to metabolic correlation studies. van der Graaff M; Vermeulen NP; Langendijk PN; Breimer DD J Pharmacol Exp Ther; 1983 Jun; 225(3):747-51. PubMed ID: 6134816 [TBL] [Abstract][Full Text] [Related]
9. Glucuronide formation in the metabolism of N-substituted aryl compounds. Irving CC Natl Cancer Inst Monogr; 1981 Dec; (58):109-11. PubMed ID: 7341967 [TBL] [Abstract][Full Text] [Related]
10. Contrasting alterations in hepatic drug biotransformation of hexobarbital and p-chloro-N-methylaniline produced by prostaglandins. Weiner M Res Commun Chem Pathol Pharmacol; 1976 Nov; 15(3):495-509. PubMed ID: 996362 [TBL] [Abstract][Full Text] [Related]
11. Comparative metabolism of four allylic barbiturates and hexobarbital by the rat and guinea pig. Harvey DJ; Glazener L; Johnson DB; Butler CM; Horning MG Drug Metab Dispos; 1977; 5(6):527-46. PubMed ID: 21777 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin. Vyas KP; Kari PH; Prakash SR; Duggan DE Drug Metab Dispos; 1990; 18(2):218-22. PubMed ID: 1971576 [TBL] [Abstract][Full Text] [Related]
13. Hexobarbital metabolism: a new metabolic pathway to produce 1,5-dimethylbarbituric acid and cyclohexenone-glutathione adduct via 3'-oxohexobarbital. Takenoshita R; Nakamura T; Toki S Xenobiotica; 1993 Aug; 23(8):925-34. PubMed ID: 8284947 [TBL] [Abstract][Full Text] [Related]
14. Elucidation of phase I and phase II metabolic pathways of rhein: species differences and their potential relevance. Dahms M; Lotz R; Lang W; Renner U; Bayer E; Spahn-Langguth H Drug Metab Dispos; 1997 Apr; 25(4):442-52. PubMed ID: 9107544 [TBL] [Abstract][Full Text] [Related]
15. Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs. Andersson SH; Lindgren A; Postlind H Drug Metab Dispos; 1998 Jun; 26(6):528-35. PubMed ID: 9616187 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of bepridil in laboratory animals and humans. Wu WN; Hills JF; Chang SY; Ng KT Drug Metab Dispos; 1988; 16(1):69-77. PubMed ID: 2894958 [TBL] [Abstract][Full Text] [Related]
17. Oxidative metabolism of butylated hydroxytoluene by hepatic and pulmonary microsomes from rats and mice. Thompson JA; Malkinson AM; Wand MD; Mastovich SL; Mead EW; Schullek KM; Laudenschlager WG Drug Metab Dispos; 1987; 15(6):833-40. PubMed ID: 2893710 [TBL] [Abstract][Full Text] [Related]
18. Comparative metabolism in vitro of a novel carcinogenic polycyclic aromatic hydrocarbon, 1,2,3,4-tetrahydro-7,12-dimethylbenz[a]anthracene, and its two regioisomeric B-ring fluoro analogues. Rinderle SJ; Black SD; Sharma PK; Witiak DT Cancer Res; 1992 Jun; 52(11):3035-42. PubMed ID: 1591719 [TBL] [Abstract][Full Text] [Related]
19. Studies on the metabolism of tulobuterol . HCl. Identification of basic urinary metabolites in the dog, rat, rabbit, and guinea pig. Matsumura K; Kubo O; Sakashita T; Kato H; Watanabe K; Hirobe M Drug Metab Dispos; 1982; 10(5):537-41. PubMed ID: 6128206 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of lovastatin by rat and human liver microsomes in vitro. Greenspan MD; Yudkovitz JB; Alberts AW; Argenbright LS; Arison BH; Smith JL Drug Metab Dispos; 1988; 16(5):678-82. PubMed ID: 2906589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]