These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28639018)

  • 1. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.
    Clausen LPW; Broholm MM; Gosewinkel U; Trapp S
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18320-18331. PubMed ID: 28639018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transpiration and metabolisation of TCE by willow plants - a pot experiment.
    Schöftner P; Watzinger A; Holzknecht P; Wimmer B; Reichenauer TG
    Int J Phytoremediation; 2016; 18(7):686-92. PubMed ID: 26684839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis).
    Deavers K; Macek T; Karlson UG; Trapp S
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1355-61. PubMed ID: 20336492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.
    Weyens N; Croes S; Dupae J; Newman L; van der Lelie D; Carleer R; Vangronsveld J
    Environ Pollut; 2010 Jul; 158(7):2422-7. PubMed ID: 20462680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 May; 67(5):2107-15. PubMed ID: 11319088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytotoxicity of cyanide to weeping willow trees.
    Yu X; Trapp S; Zhou P
    Environ Sci Pollut Res Int; 2005; 12(2):109-13. PubMed ID: 15859117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis).
    Ucisik AS; Trapp S
    Environ Toxicol Chem; 2006 Sep; 25(9):2455-60. PubMed ID: 16986801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):499-508. PubMed ID: 18719961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):171-186. PubMed ID: 28133996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation.
    Doty SL; Freeman JL; Cohu CM; Burken JG; Firrincieli A; Simon A; Khan Z; Isebrands JG; Lukas J; Blaylock MJ
    Environ Sci Technol; 2017 Sep; 51(17):10050-10058. PubMed ID: 28737929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assimilation and physiological effects of ferrocyanide on weeping willows.
    Yu XZ; Gu JD; Li L
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):609-15. PubMed ID: 18614232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz).
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):216-22. PubMed ID: 18192014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW; Doty SL
    Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, accumulation, phytotoxicity, and removal of 2,4-dichlorophenol in willow trees.
    Ucisik AS; Trapp S; Kusk KO
    Environ Toxicol Chem; 2007 Jun; 26(6):1165-71. PubMed ID: 17571681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows.
    Yu XZ; Gu JD; Xing LQ
    Ecotoxicology; 2008 Nov; 17(8):747-55. PubMed ID: 18470609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala.
    Doty SL; Shang TQ; Wilson AM; Moore AL; Newman LA; Strand SE; Gordon MP
    Water Res; 2003 Jan; 37(2):441-9. PubMed ID: 12502073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatilization of trichloroethylene from trees and soil: measurement and scaling approaches.
    Doucette W; Klein H; Chard J; Dupont R; Plaehn W; Bugbee B
    Environ Sci Technol; 2013 Jun; 47(11):5813-20. PubMed ID: 23641774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.