These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28639018)

  • 21. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees.
    Ucisik AS; Trapp S
    Arch Environ Contam Toxicol; 2008 May; 54(4):619-27. PubMed ID: 17960449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon isotope fractionation during aerobic biodegradation of trichloroethene by Burkholderia cepacia G4: a tool to map degradation mechanisms.
    Barth JA; Slater G; Schüth C; Bill M; Downey A; Larkin M; Kalin RM
    Appl Environ Microbiol; 2002 Apr; 68(4):1728-34. PubMed ID: 11916690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment.
    Dimitrova T; Repmann F; Raab T; Freese D
    Ecotoxicology; 2015 Apr; 24(3):497-510. PubMed ID: 25477029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TCE diffusion to the atmosphere in phytoremediation applications.
    Ma X; Burken JG
    Environ Sci Technol; 2003 Jun; 37(11):2534-9. PubMed ID: 12831040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms.
    Krumme ML; Timmis KN; Dwyer DF
    Appl Environ Microbiol; 1993 Aug; 59(8):2746-9. PubMed ID: 7690223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area.
    Tőzsér D; Harangi S; Baranyai E; Lakatos G; Fülöp Z; Tóthmérész B; Simon E
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3275-3290. PubMed ID: 29147988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.
    McBride MB; Martinez CE; Kim B
    Int J Phytoremediation; 2016 Dec; 18(12):1178-86. PubMed ID: 27216699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hexavalent chromium induced stress and metabolic responses in hybrid willows.
    Yu XZ; Gu JD; Huang SZ
    Ecotoxicology; 2007 Apr; 16(3):299-309. PubMed ID: 17253159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic responses of weeping willows to selenate and selenite.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):510-7. PubMed ID: 18062484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation of trichloroethylene with hybrid poplars.
    Gordon M; Choe N; Duffy J; Ekuan G; Heilman P; Muiznieks I; Ruszaj M; Shurtleff BB; Strand S; Wilmoth J; Newman LA
    Environ Health Perspect; 1998 Aug; 106 Suppl 4(Suppl 4):1001-4. PubMed ID: 9703485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Requirement of DNA repair mechanisms for survival of Burkholderia cepacia G4 upon degradation of trichloroethylene.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 Dec; 67(12):5384-91. PubMed ID: 11722883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L.
    Borišev M; Pajević S; Nikolić N; Orlović S; Župunski M; Pilipović A; Kebert M
    Int J Phytoremediation; 2016; 18(2):164-70. PubMed ID: 26247775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates.
    Yeager CM; Arthur KM; Bottomley PJ; Arp DJ
    Biodegradation; 2004 Feb; 15(1):19-28. PubMed ID: 14971854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.
    Shields MS; Reagin MJ
    Appl Environ Microbiol; 1992 Dec; 58(12):3977-83. PubMed ID: 1282314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoremediation of chlorinated ethenes in seepline sediments: tree selection.
    Stanhope A; Berry CJ; Brigmon RL
    Int J Phytoremediation; 2008; 10(6):529-46. PubMed ID: 19260231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ASSOCIATED BACTERIA INCREASE THE PHYTOEXTRACTION OF CADMIUM AND ZINC FROM A METAL-CONTAMINATED SOIL BY MYCORRHIZAL WILLOWS.
    Zimmer D; Baum C; Leinweber P; Hrynkiewicz K; Meissner R
    Int J Phytoremediation; 2009 Feb; 11(2):200-213. PubMed ID: 28134000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The potential for phytoremediation of iron cyanide complex by willows.
    Yu XZ; Zhou PH; Yang YM
    Ecotoxicology; 2006 Jul; 15(5):461-7. PubMed ID: 16703454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix).
    Watson C; Pulford ID; Riddell-Black D
    Int J Phytoremediation; 2003; 5(4):333-49. PubMed ID: 14750561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively.
    Yee DC; Maynard JA; Wood TK
    Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.