BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28639019)

  • 21. [Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission].
    Su H; Zhou X; Xia X; Sun Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1268-80. PubMed ID: 22117510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pollutants from fish feeding recycled for microalgae production as sustainable, renewable and valuable products.
    Chan H
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1474-1486. PubMed ID: 30430445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodiesel production potential of wastewater treatment high rate algal pond biomass.
    Mehrabadi A; Craggs R; Farid MM
    Bioresour Technol; 2016 Dec; 221():222-233. PubMed ID: 27639675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production.
    Sacristán de Alva M; Luna-Pabello VM; Cadena E; Ortíz E
    Bioresour Technol; 2013 Oct; 146():744-748. PubMed ID: 23932286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodiesel production from algae grown on food industry wastewater.
    Mureed K; Kanwal S; Hussain A; Noureen S; Hussain S; Ahmad S; Ahmad M; Waqas R
    Environ Monit Assess; 2018 Apr; 190(5):271. PubMed ID: 29633020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating electro-Fenton and microalgae for the sustainable management of real food processing wastewater.
    Arias DM; Olvera Vargas P; Vidal Sánchez AN; Olvera-Vargas H
    Chemosphere; 2024 Jul; 360():142372. PubMed ID: 38768783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production.
    Aketo T; Hoshikawa Y; Nojima D; Yabu Y; Maeda Y; Yoshino T; Takano H; Tanaka T
    J Biosci Bioeng; 2020 May; 129(5):565-572. PubMed ID: 31974048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cultivation of microalgae in dairy farm wastewater without sterilization.
    Ding J; Zhao F; Cao Y; Xing L; Liu W; Mei S; Li S
    Int J Phytoremediation; 2015; 17(1-6):222-7. PubMed ID: 25397979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent.
    Gu D; Xiao Q; Zhao Y; Yu X
    Sci Total Environ; 2023 Jan; 857(Pt 2):159461. PubMed ID: 36257437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microalgae on distillery wastewater treatment for improved biodiesel production and cellulose nanofiber synthesis: A sustainable biorefinery approach.
    Vasistha S; Balakrishnan D; Manivannan A; Rai MP
    Chemosphere; 2023 Feb; 315():137666. PubMed ID: 36586450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgae cultivation for phenolic compounds removal.
    Surkatti R; Al-Zuhair S
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33936-33956. PubMed ID: 30353440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freshwater diatoms as a source of lipids for biofuels.
    Graham JM; Graham LE; Zulkifly SB; Pfleger BF; Hoover SW; Yoshitani J
    J Ind Microbiol Biotechnol; 2012 Mar; 39(3):419-28. PubMed ID: 22009056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region.
    Dahmani S; Zerrouki D; Ramanna L; Rawat I; Bux F
    Bioresour Technol; 2016 Nov; 219():749-752. PubMed ID: 27528269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable approach for biodiesel production and wastewater treatment by cultivating
    Van Lal Chhandama M; Satyan KB
    Int J Phytoremediation; 2023; 25(5):679-686. PubMed ID: 35875946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment.
    Wang M; Kuo-Dahab WC; Dolan S; Park C
    Bioresour Technol; 2014 Feb; 154():131-7. PubMed ID: 24384320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of temperature and nutrient content on lipid production in freshwater microalgae cultures.
    Bohnenberger JE; Crossetti LO
    An Acad Bras Cienc; 2014 Sep; 86(3):1239-48. PubMed ID: 25211106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.
    Wang J; Yang H; Wang F
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3307-29. PubMed ID: 24532442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production.
    Hu Y; Hao X; van Loosdrecht M; Chen H
    Water Res; 2017 Nov; 125():11-22. PubMed ID: 28822815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation.
    Chandra R; Rohit MV; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2014 Aug; 165():279-87. PubMed ID: 24703606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.