These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28639258)

  • 1. Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases.
    Lukin S; Stolar T; Tireli M; Blanco MV; Babić D; Friščić T; Užarević K; Halasz I
    Chemistry; 2017 Oct; 23(56):13941-13949. PubMed ID: 28639258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time
    Lukin S; Germann LS; Friščić T; Halasz I
    Acc Chem Res; 2022 May; 55(9):1262-1277. PubMed ID: 35446551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.
    Gracin D; Štrukil V; Friščić T; Halasz I; Užarević K
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6193-7. PubMed ID: 24764165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists.
    Užarević K; Halasz I; Friščić T
    J Phys Chem Lett; 2015 Oct; 6(20):4129-40. PubMed ID: 26722788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Illuminating milling mechanochemistry by tandem real-time fluorescence emission and Raman spectroscopy monitoring.
    Julien PA; Arhangelskis M; Germann LS; Etter M; Dinnebier RE; Morris AJ; Friščić T
    Chem Sci; 2023 Nov; 14(43):12121-12132. PubMed ID: 37969588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation.
    Germann LS; Arhangelskis M; Etter M; Dinnebier RE; Friščić T
    Chem Sci; 2020 Aug; 11(37):10092-10100. PubMed ID: 34094270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time and in situ monitoring of mechanochemical milling reactions.
    Friščić T; Halasz I; Beldon PJ; Belenguer AM; Adams F; Kimber SA; Honkimäki V; Dinnebier RE
    Nat Chem; 2013 Jan; 5(1):66-73. PubMed ID: 23247180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal-Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity.
    Stolar T; Batzdorf L; Lukin S; Žilić D; Motillo C; Friščić T; Emmerling F; Halasz I; Užarević K
    Inorg Chem; 2017 Jun; 56(11):6599-6608. PubMed ID: 28537382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of activation energies in mechanochemical reactions.
    Fischer F; Wenzel KJ; Rademann K; Emmerling F
    Phys Chem Chem Phys; 2016 Aug; 18(33):23320-5. PubMed ID: 27498986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework.
    Katsenis AD; Puškarić A; Štrukil V; Mottillo C; Julien PA; Užarević K; Pham MH; Do TO; Kimber SA; Lazić P; Magdysyuk O; Dinnebier RE; Halasz I; Friščić T
    Nat Commun; 2015 Mar; 6():6662. PubMed ID: 25798542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals.
    Halasz I; Puškarić A; Kimber SA; Beldon PJ; Belenguer AM; Adams F; Honkimäki V; Dinnebier RE; Patel B; Jones W; Strukil V; Friščić T
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11538-41. PubMed ID: 24108571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Crystalline Intermediates in Mechanochemical Cyclorhodation Reactions Elucidated by in-Situ X-ray Powder Diffraction and Computation.
    Hernández JG; Ardila-Fierro KJ; Gómez S; Stolar T; Rubčić M; Topić E; Hadad CZ; Restrepo A
    Chemistry; 2023 Sep; 29(52):e202301290. PubMed ID: 37347170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemical Metathesis between AgNO
    Lukin S; Stolar T; Lončarić I; Milanović I; Biliškov N; di Michiel M; Friščić T; Halasz I
    Inorg Chem; 2020 Sep; 59(17):12200-12208. PubMed ID: 32806016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs).
    Tan D; Loots L; Friščić T
    Chem Commun (Camb); 2016 Jun; 52(50):7760-81. PubMed ID: 27185190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy.
    Julien PA; Malvestiti I; Friščić T
    Beilstein J Org Chem; 2017; 13():2160-2168. PubMed ID: 29114323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Investigations of Mechanochemical One-Pot Syntheses.
    Kulla H; Haferkamp S; Akhmetova I; Röllig M; Maierhofer C; Rademann K; Emmerling F
    Angew Chem Int Ed Engl; 2018 May; 57(20):5930-5933. PubMed ID: 29605971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the dynamics of mechanochemical ternary cocrystal formation.
    Kulla H; Michalchuk AAL; Emmerling F
    Chem Commun (Camb); 2019 Aug; 55(66):9793-9796. PubMed ID: 31360937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediates in Mechanochemical Reactions.
    Ardila-Fierro KJ; Hernández JG
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202317638. PubMed ID: 38179857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct in situ investigation of milling reactions using combined X-ray diffraction and Raman spectroscopy.
    Batzdorf L; Fischer F; Wilke M; Wenzel KJ; Emmerling F
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1799-802. PubMed ID: 25529541
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Julien PA; Germann LS; Titi HM; Etter M; Dinnebier RE; Sharma L; Baltrusaitis J; Friščić T
    Chem Sci; 2020 Feb; 11(9):2350-2355. PubMed ID: 34084395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.