These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28639412)

  • 1. The role of microRNA-5196 in the pathogenesis of systemic sclerosis.
    Ciechomska M; Zarecki P; Merdas M; Swierkot J; Morgiel E; Wiland P; Maslinski W; Bogunia-Kubik K
    Eur J Clin Invest; 2017 Aug; 47(8):555-564. PubMed ID: 28639412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone Demethylation and Toll-like Receptor 8-Dependent Cross-Talk in Monocytes Promotes Transdifferentiation of Fibroblasts in Systemic Sclerosis Via Fra-2.
    Ciechomska M; O'Reilly S; Przyborski S; Oakley F; Bogunia-Kubik K; van Laar JM
    Arthritis Rheumatol; 2016 Jun; 68(6):1493-504. PubMed ID: 26814616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toll-like receptor-mediated, enhanced production of profibrotic TIMP-1 in monocytes from patients with systemic sclerosis: role of serum factors.
    Ciechomska M; Huigens CA; Hügle T; Stanly T; Gessner A; Griffiths B; Radstake TR; Hambleton S; O'Reilly S; van Laar JM
    Ann Rheum Dis; 2013 Aug; 72(8):1382-9. PubMed ID: 23223421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes.
    Farina A; Peruzzi G; Lacconi V; Lenna S; Quarta S; Rosato E; Vestri AR; York M; Dreyfus DH; Faggioni A; Morrone S; Trojanowska M; Farina GA
    Arthritis Res Ther; 2017 Feb; 19(1):39. PubMed ID: 28245863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated Fibronectin Levels in Profibrotic CD14
    Rudnik M; Hukara A; Kocherova I; Jordan S; Schniering J; Milleret V; Ehrbar M; Klingel K; Feghali-Bostwick C; Distler O; Błyszczuk P; Kania G
    Front Immunol; 2021; 12():642891. PubMed ID: 34504485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High reactive oxygen species in fibrotic and nonfibrotic skin of patients with diffuse cutaneous systemic sclerosis.
    Bourji K; Meyer A; Chatelus E; Pincemail J; Pigatto E; Defraigne JO; Singh F; Charlier C; Geny B; Gottenberg JE; Punzi L; Cozzi F; Sibilia J
    Free Radic Biol Med; 2015 Oct; 87():282-9. PubMed ID: 26143738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis.
    Brkic Z; van Bon L; Cossu M; van Helden-Meeuwsen CG; Vonk MC; Knaapen H; van den Berg W; Dalm VA; Van Daele PL; Severino A; Maria NI; Guillen S; Dik WA; Beretta L; Versnel MA; Radstake T
    Ann Rheum Dis; 2016 Aug; 75(8):1567-73. PubMed ID: 26371289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists.
    York MR; Nagai T; Mangini AJ; Lemaire R; van Seventer JM; Lafyatis R
    Arthritis Rheum; 2007 Mar; 56(3):1010-20. PubMed ID: 17328080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased activation of ataxia telangiectasia mutated (ATM) in monocytes from patients with systemic sclerosis.
    Sakata K; Yasuoka H; Yoshimoto K; Takeuchi T
    Rheumatology (Oxford); 2020 Dec; 59(12):3961-3970. PubMed ID: 32743653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases systems and autoantibody patterns in systemic sclerosis.
    Montagnana M; Volpe A; Lippi G; Caramaschi P; Salvagno GL; Biasi D; Bambara LM; Guidi GC
    Clin Biochem; 2007 Aug; 40(12):837-42. PubMed ID: 17493602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular free radical production by peripheral blood T lymphocytes from patients with systemic sclerosis: role of NADPH oxidase and ERK1/2.
    Amico D; Spadoni T; Rovinelli M; Serafini M; D'Amico G; Campelli N; Svegliati Baroni S; Gabrielli A
    Arthritis Res Ther; 2015 Mar; 17(1):68. PubMed ID: 25889655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic mechanisms: An emerging role in pathogenesis and its therapeutic potential in systemic sclerosis.
    Luo Y; Wang Y; Shu Y; Lu Q; Xiao R
    Int J Biochem Cell Biol; 2015 Oct; 67():92-100. PubMed ID: 26043891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-155 in the progression of lung fibrosis in systemic sclerosis.
    Christmann RB; Wooten A; Sampaio-Barros P; Borges CL; Carvalho CR; Kairalla RA; Feghali-Bostwick C; Ziemek J; Mei Y; Goummih S; Tan J; Alvarez D; Kass DJ; Rojas M; de Mattos TL; Parra E; Stifano G; Capelozzi VL; Simms RW; Lafyatis R
    Arthritis Res Ther; 2016 Jul; 18(1):155. PubMed ID: 27377409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis.
    Kim WU; Min SY; Cho ML; Hong KH; Shin YJ; Park SH; Cho CS
    Arthritis Res Ther; 2005; 7(1):R71-9. PubMed ID: 15642145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics, the holy grail in the pathogenesis of systemic sclerosis.
    Altorok N; Almeshal N; Wang Y; Kahaleh B
    Rheumatology (Oxford); 2015 Oct; 54(10):1759-70. PubMed ID: 24740406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circulating cell-free microRNA profile in systemic sclerosis is distinct from both healthy controls and systemic lupus erythematosus.
    Steen SO; Iversen LV; Carlsen AL; Burton M; Nielsen CT; Jacobsen S; Heegaard NH
    J Rheumatol; 2015 Feb; 42(2):214-21. PubMed ID: 25399392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased MMP-9 activity in the serum of patients with diffuse cutaneous systemic sclerosis.
    Kikuchi K; Kubo M; Hoashi T; Tamaki K
    Clin Exp Dermatol; 2002 Jun; 27(4):301-5. PubMed ID: 12139676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of TLR7, TLR9, JAK2, and STAT3 genes in peripheral blood mononuclear cells from patients with systemic sclerosis.
    Vreća M; Zeković A; Damjanov N; Andjelković M; Ugrin M; Pavlović S; Spasovski V
    J Appl Genet; 2018 Feb; 59(1):59-66. PubMed ID: 29147913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum levels of interleukin-18-binding protein isoform a: Clinical association with inflammation and pulmonary hypertension in systemic sclerosis.
    Nakamura K; Asano Y; Taniguchi T; Minatsuki S; Inaba T; Maki H; Hatano M; Yamashita T; Saigusa R; Ichimura Y; Takahashi T; Toyama T; Yoshizaki A; Miyagaki T; Sugaya M; Sato S
    J Dermatol; 2016 Aug; 43(8):912-8. PubMed ID: 26777734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum TIMP-1, TIMP-2, and MMP-1 in patients with systemic sclerosis, primary Raynaud's phenomenon, and in normal controls.
    Young-Min SA; Beeton C; Laughton R; Plumpton T; Bartram S; Murphy G; Black C; Cawston TE
    Ann Rheum Dis; 2001 Sep; 60(9):846-51. PubMed ID: 11502611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.