BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 28639422)

  • 21. TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system.
    Chiang YA; Kinoshita M; Maekawa S; Kulkarni A; Lo CF; Yoshiura Y; Wang HC; Aoki T
    Fish Shellfish Immunol; 2016 Jan; 48():212-20. PubMed ID: 26578247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. shocked Gene is required for the function of a premotor network in the zebrafish CNS.
    Cui WW; Saint-Amant L; Kuwada JY
    J Neurophysiol; 2004 Nov; 92(5):2898-908. PubMed ID: 15212431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of anxiety-like and social behaviour in medaka and zebrafish.
    Lucon-Xiccato T; Loosli F; Conti F; Foulkes NS; Bertolucci C
    Sci Rep; 2022 Jun; 12(1):10926. PubMed ID: 35764691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the structure, composition and mechanical properties of anosteocytic vertebrae of medaka (O. latipes) and osteocytic vertebrae of zebrafish (D. rerio).
    Ofer L; Zaslansky P; Shahar R
    J Fish Biol; 2021 Apr; 98(4):995-1006. PubMed ID: 32239680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishment of pten knockout medaka with transcription activator-like effector nucleases (TALENs) as a model of PTEN deficiency disease.
    Matsuzaki Y; Sakuma T; Yamamoto T; Saya H
    PLoS One; 2017; 12(10):e0186878. PubMed ID: 29053747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental transition of touch response from slow muscle-mediated coilings to fast muscle-mediated burst swimming in zebrafish.
    Naganawa Y; Hirata H
    Dev Biol; 2011 Jul; 355(2):194-204. PubMed ID: 21554867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA methyltransferase 1 functions through C/ebpa to maintain hematopoietic stem and progenitor cells in zebrafish.
    Liu X; Jia X; Yuan H; Ma K; Chen Y; Jin Y; Deng M; Pan W; Chen S; Chen Z; de The H; Zon LI; Zhou Y; Zhou J; Zhu J
    J Hematol Oncol; 2015 Feb; 8():15. PubMed ID: 25886310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development.
    Tani S; Kusakabe R; Naruse K; Sakamoto H; Inoue K
    Gene; 2010 Jan; 449(1-2):41-9. PubMed ID: 19770025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway.
    Liu LY; Lin MH; Lai ZY; Jiang JP; Huang YC; Jao LE; Chuang YJ
    J Biomed Sci; 2016 Aug; 23(1):59. PubMed ID: 27484901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
    Auer TO; Del Bene F
    Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka.
    Gajewski M; Elmasri H; Girschick M; Sieger D; Winkler C
    Dev Genes Evol; 2006 Jun; 216(6):315-32. PubMed ID: 16544152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b.
    Moravec CE; Samuel J; Weng W; Wood IC; Sirotkin HI
    J Neurosci; 2016 Sep; 36(36):9407-19. PubMed ID: 27605615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ontogeny and Sexual Differences in Swimming Proximity to Conspecifics in Response to Visual Cues in Medaka Fish.
    Isoe Y; Konagaya Y; Yokoi S; Kubo T; Takeuchi H
    Zoolog Sci; 2016 Jun; 33(3):246-54. PubMed ID: 27268978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease.
    Hirata H; Watanabe T; Hatakeyama J; Sprague SM; Saint-Amant L; Nagashima A; Cui WW; Zhou W; Kuwada JY
    Development; 2007 Aug; 134(15):2771-81. PubMed ID: 17596281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes.
    Parmar MB; Shams R; Wright JM
    Mar Genomics; 2013 Sep; 11():1-10. PubMed ID: 23632098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish.
    Elbaz I; Lerer-Goldshtein T; Okamoto H; Appelbaum L
    FASEB J; 2015 Apr; 29(4):1220-34. PubMed ID: 25466900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant.
    Matsuda N; Mishina M
    Development; 2004 May; 131(9):1913-25. PubMed ID: 15056614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development.
    Kelsh RN; Inoue C; Momoi A; Kondoh H; Furutani-Seiki M; Ozato K; Wakamatsu Y
    Mech Dev; 2004 Jul; 121(7-8):841-59. PubMed ID: 15210190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement.
    Matsui H; Taniguchi Y; Inoue H; Kobayashi Y; Sakaki Y; Toyoda A; Uemura K; Kobayashi D; Takeda S; Takahashi R
    Neurosci Res; 2010 Feb; 66(2):151-61. PubMed ID: 19895857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-Induced Inactivation of the Autism-Risk Gene
    Gabellini C; Pucci C; De Cesari C; Martini D; Di Lauro C; Digregorio M; Norton W; Zippo A; Sessa A; Broccoli V; Andreazzoli M
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.