These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28639478)

  • 21. Capacity, capability, and performance: different constructs or three of a kind?
    Holsbeeke L; Ketelaar M; Schoemaker MM; Gorter JW
    Arch Phys Med Rehabil; 2009 May; 90(5):849-55. PubMed ID: 19406307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of arm/hand functioning in children with a congenital transverse or longitudinal reduction deficiency of the upper limb.
    Buffart LM; Roebroeck ME; Pesch-Batenburg JM; Janssen WG; Stam HJ
    Disabil Rehabil; 2006 Jan; 28(2):85-95. PubMed ID: 16393838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Consumer concerns and the functional value of prostheses to upper limb amputees.
    Kejlaa GH
    Prosthet Orthot Int; 1993 Dec; 17(3):157-63. PubMed ID: 8134275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.
    Spiers AJ; Resnik L; Dollar AM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1273-1280. PubMed ID: 28813996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of prostheses on children with congenital upper limb deficiencies.
    Mano H; Fujiwara S; Haga N
    Pediatr Int; 2020 Sep; 62(9):1039-1043. PubMed ID: 32329154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionality of i-LIMB and i-LIMB pulse hands: case report.
    van der Niet O; Bongers RM; van der Sluis CK
    J Rehabil Res Dev; 2013; 50(8):1123-8. PubMed ID: 24458898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical results of an investigation of paediatric upper limb myoelectric prosthesis fitting at the Quebec Rehabilitation Institute.
    Routhier F; Vincent C; Morissette MJ; Desaulniers L
    Prosthet Orthot Int; 2001 Aug; 25(2):119-31. PubMed ID: 11573879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences.
    Zuniga J; Katsavelis D; Peck J; Stollberg J; Petrykowski M; Carson A; Fernandez C
    BMC Res Notes; 2015 Jan; 8():10. PubMed ID: 25601104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of order of practice in learning to handle an upper-limb prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    Arch Phys Med Rehabil; 2008 Sep; 89(9):1759-64. PubMed ID: 18675393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of capacity for myoelectric control: a new Rasch-built measure of prosthetic hand control.
    Hermansson LM; Fisher AG; BernspÄng B; Eliasson AC
    J Rehabil Med; 2005 May; 37(3):166-71. PubMed ID: 16040474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PARTICIPATORY DESIGN OF PEDIATRIC UPPER LIMB PROSTHESES: QUALITATIVE METHODS AND PROTOTYPING.
    Sims T; Cranny A; Metcalf C; Chappell P; Donovan-Hall M
    Int J Technol Assess Health Care; 2017 Jan; 33(6):629-637. PubMed ID: 28874215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HIV encephalopathy with bilateral lower limb spasticity: upper limb motor function and level of activity and participation.
    Mann TN; Donald KA; Laughton B; Lamberts RP; Langerak NG
    Dev Med Child Neurol; 2017 Apr; 59(4):412-419. PubMed ID: 27573542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incidental Learning and Explicit Recall in Upper Extremity Prosthesis Use: Insights Into Functional Rehabilitation Challenges.
    Hughey L; Wheaton LA
    J Mot Behav; 2016; 48(6):519-526. PubMed ID: 27341554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Physics-based Virtual Reality Environment to Quantify Functional Performance of Upper-limb Prostheses.
    Odette K; Fu Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3807-3810. PubMed ID: 31946703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs.
    Weeks DL; Wallace SA; Anderson DI
    Arch Phys Med Rehabil; 2003 Mar; 84(3):437-43. PubMed ID: 12638114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional changes through the usage of 3D-printed transitional prostheses in children.
    Zuniga JM; Peck JL; Srivastava R; Pierce JE; Dudley DR; Than NA; Stergiou N
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):68-74. PubMed ID: 29116866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movement characteristics of upper extremity prostheses during basic goal-directed tasks.
    Bouwsema H; van der Sluis CK; Bongers RM
    Clin Biomech (Bristol); 2010 Jul; 25(6):523-9. PubMed ID: 20362374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between degree of disability, usefulness of assistive devices, and daily use duration: an investigation in children with congenital upper limb deficiencies who use upper limb prostheses.
    Mano H; Noguchi S; Fujiwara S; Haga N
    Assist Technol; 2023 Mar; 35(2):136-141. PubMed ID: 34410874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.