BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28639617)

  • 1. Gene therapy for spinomuscular atrophy: a biomedical advance, a missed opportunity for more equitable drug pricing.
    Friedmann T
    Gene Ther; 2017 Sep; 24(9):503-505. PubMed ID: 28639617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
    Singh NN; Howell MD; Androphy EJ; Singh RN
    Gene Ther; 2017 Sep; 24(9):520-526. PubMed ID: 28485722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic approaches for spinal muscular atrophy (SMA).
    Scoto M; Finkel RS; Mercuri E; Muntoni F
    Gene Ther; 2017 Sep; 24(9):514-519. PubMed ID: 28561813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of SMN trans-splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy.
    Shababi M; Glascock J; Lorson CL
    Hum Gene Ther; 2011 Feb; 22(2):135-44. PubMed ID: 20804424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts.
    Farrelly-Rosch A; Lau CL; Patil N; Turner BJ; Shabanpoor F
    Neurochem Int; 2017 Sep; 108():213-221. PubMed ID: 28389270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving towards treatments for spinal muscular atrophy: hopes and limits.
    Wirth B; Barkats M; Martinat C; Sendtner M; Gillingwater TH
    Expert Opin Emerg Drugs; 2015 Sep; 20(3):353-6. PubMed ID: 25920617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs.
    Madocsai C; Lim SR; Geib T; Lam BJ; Hertel KJ
    Mol Ther; 2005 Dec; 12(6):1013-22. PubMed ID: 16226920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue of gene-expression changes in an induced mouse model of spinal muscular atrophy by an antisense oligonucleotide that promotes inclusion of SMN2 exon 7.
    Staropoli JF; Li H; Chun SJ; Allaire N; Cullen P; Thai A; Fleet CM; Hua Y; Bennett CF; Krainer AR; Kerr D; McCampbell A; Rigo F; Carulli JP
    Genomics; 2015 Apr; 105(4):220-8. PubMed ID: 25645699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twenty-Five Years of Spinal Muscular Atrophy Research: From Phenotype to Genotype to Therapy, and What Comes Next.
    Wirth B; Karakaya M; Kye MJ; Mendoza-Ferreira N
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():231-261. PubMed ID: 32004094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Cell-Penetrating Peptide Delivery of Antisense Oligonucleotides for Therapeutic Efficacy in Spinal Muscular Atrophy.
    Hammond SM; Abendroth F; Gait MJ; Wood MJA
    Methods Mol Biol; 2019; 2036():221-236. PubMed ID: 31410800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease mechanisms and therapeutic approaches in spinal muscular atrophy.
    Tisdale S; Pellizzoni L
    J Neurosci; 2015 Jun; 35(23):8691-700. PubMed ID: 26063904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-(N-ethyl-N-isopropyl)-amiloride enhances SMN2 exon 7 inclusion and protein expression in spinal muscular atrophy cells.
    Yuo CY; Lin HH; Chang YS; Yang WK; Chang JG
    Ann Neurol; 2008 Jan; 63(1):26-34. PubMed ID: 17924536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy.
    Woo CJ; Maier VK; Davey R; Brennan J; Li G; Brothers J; Schwartz B; Gordo S; Kasper A; Okamoto TR; Johansson HE; Mandefro B; Sareen D; Bialek P; Chau BN; Bhat B; Bullough D; Barsoum J
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1509-E1518. PubMed ID: 28193854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA.
    Zhang ML; Lorson CL; Androphy EJ; Zhou J
    Gene Ther; 2001 Oct; 8(20):1532-8. PubMed ID: 11704813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [New treatments for spinal muscular atrophy].
    Wurster CD; Günther R
    Nervenarzt; 2020 Apr; 91(4):294-302. PubMed ID: 32076758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy.
    Osman EY; Washington CW; Kaifer KA; Mazzasette C; Patitucci TN; Florea KM; Simon ME; Ko CP; Ebert AD; Lorson CL
    Mol Ther; 2016 Sep; 24(9):1592-601. PubMed ID: 27401142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy.
    Brichta L; Hofmann Y; Hahnen E; Siebzehnrubl FA; Raschke H; Blumcke I; Eyupoglu IY; Wirth B
    Hum Mol Genet; 2003 Oct; 12(19):2481-9. PubMed ID: 12915451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutics development for spinal muscular atrophy.
    Sumner CJ
    NeuroRx; 2006 Apr; 3(2):235-45. PubMed ID: 16554261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal muscular atrophy: diagnosis and management in a new therapeutic era.
    Arnold WD; Kassar D; Kissel JT
    Muscle Nerve; 2015 Feb; 51(2):157-67. PubMed ID: 25346245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.