These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 28639731)

  • 1. Cu
    De Trizio L; Gaspari R; Bertoni G; Kriegel I; Moretti L; Scotognella F; Maserati L; Zhang Y; Messina GC; Prato M; Marras S; Cavalli A; Manna L
    Chem Mater; 2015 Feb; 27(3):1120-1128. PubMed ID: 25960605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Infrared Absorption Spectroscopy by Resonant Vibrational Coupling with Plasmonic Metal Oxide Nanocrystals.
    Chang WJ; Roman BJ; Green AM; Truskett TM; Milliron DJ
    ACS Nano; 2024 Jul; ():. PubMed ID: 39039957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals.
    Zhang Z; Wang Z; He S; Wang C; Jin M; Yin Y
    Chem Sci; 2015 Sep; 6(9):5197-5203. PubMed ID: 29449925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of (La4O6)n, (La2Ce2O7)n, and (Ce4O8)n nanoclusters (n = 10, 18): Temperature effects and O-vacancy formation.
    Mocelim M; Santos MN; Bittencourt AFB; Lourenço TC; Da Silva JLF
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38726943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Chemistries for Vacancy Modulation in Plasmonic Copper Phosphide Nanocrystals.
    Rachkov AG; Chalek K; Yin H; Xu M; Holland GP; Schimpf AM
    ACS Nano; 2024 Feb; 18(7):5282-96. PubMed ID: 38324804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical and Magneto-Optical Properties of Donor-Bound Excitons in Vacancy-Engineered Colloidal Nanocrystals.
    Carulli F; Pinchetti V; Zaffalon ML; Camellini A; Rotta Loria S; Moro F; Fanciulli M; Zavelani-Rossi M; Meinardi F; Crooker SA; Brovelli S
    Nano Lett; 2021 Jul; 21(14):6211-6219. PubMed ID: 34260252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate.
    Singh H; Topsakal M; Attenkofer K; Wolf T; Leskes M; Duan Y; Wang F; Vinson J; Lu D; Frenkel AI
    Phys Rev Mater; 2018; 2():. PubMed ID: 31093600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving the Plasmon of LaB₆ from IR to Near-IR via Eu-Doping.
    Mattox TM; Coffman DK; Roh I; Sims C; Urban JJ
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29389862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment.
    Ghorai N; Ghosh HN
    Langmuir; 2022 May; 38(18):5339-5350. PubMed ID: 35491746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping silicon nanocrystals and quantum dots.
    Oliva-Chatelain BL; Ticich TM; Barron AR
    Nanoscale; 2016 Jan; 8(4):1733-45. PubMed ID: 26727507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
    Elimelech O; Liu J; Plonka AM; Frenkel AI; Banin U
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10335-10340. PubMed ID: 28639731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption.
    Wang F; Li Q; Lin L; Peng H; Liu Z; Xu D
    J Am Chem Soc; 2015 Sep; 137(37):12006-12. PubMed ID: 26317687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals.
    van der Stam W; Gudjonsdottir S; Evers WH; Houtepen AJ
    J Am Chem Soc; 2017 Sep; 139(37):13208-13217. PubMed ID: 28841295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stoichiometric Doping of Highly Coupled Cu
    Lee M; Yang J; Lee H; Lee JI; Koirala AR; Park J; Jo H; Kim S; Park H; Kwak J; Yoo H; Huh W; Kang MS
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26330-26338. PubMed ID: 34037381
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.