These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28639791)

  • 1. Insight into the Final Step of the Supramolecular Buildup of Eumelanin.
    Büngeler A; Hämisch B; Huber K; Bremser W; Strube OI
    Langmuir; 2017 Jul; 33(27):6895-6901. PubMed ID: 28639791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Synthesis of the Type-A Particle Substructure from Enzymatically Produced Eumelanin.
    Büngeler A; Kollmann F; Huber K; Strube OI
    Biomacromolecules; 2022 Mar; 23(3):1020-1029. PubMed ID: 34982545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eumelanin buildup on the nanoscale: aggregate growth/assembly and visible absorption development in biomimetic 5,6-dihydroxyindole polymerization.
    Arzillo M; Mangiapia G; Pezzella A; Heenan RK; Radulescu A; Paduano L; d'Ischia M
    Biomacromolecules; 2012 Aug; 13(8):2379-90. PubMed ID: 22651227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Supramolecular Buildup of Eumelanin: Structures, Mechanisms, Controllability.
    Büngeler A; Hämisch B; Strube OI
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28878140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology of synthetic DOPA-eumelanin deposited on glass and mica substrates: an atomic force microscopy investigation.
    Perna G; Lasalvia M; D'Antonio P; Mallardi A; Palazzo G; Fiocco D; Gallone A; Cicero R; Capozzi V
    Micron; 2014 Sep; 64():28-33. PubMed ID: 24981210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific in situ synthesis of eumelanin nanoparticles by an enzymatic autodeposition-like process.
    Strube OI; Büngeler A; Bremser W
    Biomacromolecules; 2015 May; 16(5):1608-13. PubMed ID: 25826232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy.
    Clancy CM; Simon JD
    Biochemistry; 2001 Nov; 40(44):13353-60. PubMed ID: 11683645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of preparation procedures on the morphology of melanin from the ink sac of Sepia officinalis.
    Liu Y; Simon JD
    Pigment Cell Res; 2003 Feb; 16(1):72-80. PubMed ID: 12519128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of structural, electronic, and optical properties of eumelanin films by electrospray deposition.
    Abbas M; Ali M; Shah SK; D'Amico F; Postorino P; Mangialardo S; Cestelli Guidi M; Cricenti A; Gunnella R
    J Phys Chem B; 2011 Sep; 115(38):11199-207. PubMed ID: 21853992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin.
    Ju KY; Fischer MC; Warren WS
    ACS Nano; 2018 Dec; 12(12):12050-12061. PubMed ID: 30500158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans.
    Eisenman HC; Nosanchuk JD; Webber JB; Emerson RJ; Camesano TA; Casadevall A
    Biochemistry; 2005 Mar; 44(10):3683-93. PubMed ID: 15751945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human iridal stroma melanosomes of varying pheomelanin contents possess a common eumelanic outer surface.
    Peles DN; Hong L; Hu DN; Ito S; Nemanich RJ; Simon JD
    J Phys Chem B; 2009 Aug; 113(32):11346-51. PubMed ID: 19618947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical self-assembly of melanin films on gold.
    Díaz P; Gimeno Y; Carro P; González S; Schilardi PL; Benítez G; Salvarezza RC; Creus AH
    Langmuir; 2005 Jun; 21(13):5924-30. PubMed ID: 15952843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of potassium on the supramolecular structure and electronic properties of eumelanin thin films.
    Borghetti P; Goldoni A; Castellarin-Cudia C; Casalis L; Herberg F; Floreano L; Cossaro A; Verdini A; Gebauer R; Ghosh P; Sangaletti L
    Langmuir; 2010 Dec; 26(24):19007-13. PubMed ID: 21077619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.
    Bootz A; Vogel V; Schubert D; Kreuter J
    Eur J Pharm Biopharm; 2004 Mar; 57(2):369-75. PubMed ID: 15018998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eumelanin fibrils.
    McQueenie R; Sutter J; Karolin J; Birch DJ
    J Biomed Opt; 2012 Jul; 17(7):075001. PubMed ID: 22894473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design.
    Chen CT; Ball V; de Almeida Gracio JJ; Singh MK; Toniazzo V; Ruch D; Buehler MJ
    ACS Nano; 2013 Feb; 7(2):1524-32. PubMed ID: 23320483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative relaxation of Sepia eumelanin is affected by aggregation.
    Nofsinger JB; Simon JD
    Photochem Photobiol; 2001 Jul; 74(1):31-7. PubMed ID: 11460534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small molecule modulators of aggregation in synthetic melanin polymerizations.
    Belitsky JM; Ellowitz MZ; Lye D; Kilbo AL
    Bioorg Med Chem Lett; 2012 Sep; 22(17):5503-7. PubMed ID: 22835871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy.
    Moradian-Oldak J; Paine ML; Lei YP; Fincham AG; Snead ML
    J Struct Biol; 2000 Jul; 131(1):27-37. PubMed ID: 10945967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.