BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28640198)

  • 1. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia.
    McWilliams BT; Wang H; Binns VJ; Curto S; Bossmann SH; Prakash P
    J Funct Biomater; 2017 Jun; 8(3):. PubMed ID: 28640198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe
    Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.
    Shah RR; Dombrowsky AR; Paulson AL; Johnson MP; Nikles DE; Brazel CS
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():18-29. PubMed ID: 27523991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-criterion optimization of invasive antenna applicators for Au@Fe
    Singla A; Marwaha A; Marwaha S
    Electromagn Biol Med; 2023 Jan; 42(1):21-40. PubMed ID: 36857381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors.
    Petryk AA; Stigliano RV; Giustini AJ; Gottesman RE; Trembly BS; Kaufman PA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24386533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.
    Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I
    Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation.
    Curto S; Taj-Eldin M; Fairchild D; Prakash P
    Med Phys; 2015 Nov; 42(11):6152-61. PubMed ID: 26520708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs).
    Minbashi M; Kordbacheh AA; Ghobadi A; Tuchin VV
    Comput Biol Med; 2020 May; 120():103741. PubMed ID: 32421646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target visualisation and microwave hyperthermia monitoring using nanoparticle-enhanced transmission ultrasound (NETUS).
    Perlman O; Weitz IS; Azhari H
    Int J Hyperthermia; 2018 Sep; 34(6):773-785. PubMed ID: 29063825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating.
    Etheridge ML; Bischof JC
    Ann Biomed Eng; 2013 Jan; 41(1):78-88. PubMed ID: 22855120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy.
    Radović M; Calatayud MP; Goya GF; Ibarra MR; Antić B; Spasojević V; Nikolić N; Janković D; Mirković M; Vranješ-Đurić S
    J Biomed Mater Res A; 2015 Jan; 103(1):126-34. PubMed ID: 24616186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.
    Mahdavi M; Ahmad MB; Haron MJ; Namvar F; Nadi B; Rahman MZ; Amin J
    Molecules; 2013 Jun; 18(7):7533-48. PubMed ID: 23807578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of frequency on the performance of microwave ablation.
    Sawicki JF; Shea JD; Behdad N; Hagness SC
    Int J Hyperthermia; 2017 Feb; 33(1):61-68. PubMed ID: 27443394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results.
    Astefanoaei I; Gimaev R; Zverev V; Tishin A; Stancu A
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.
    Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.
    Myrovali E; Papadopoulos K; Charalampous G; Kesapidou P; Vourlias G; Kehagias T; Angelakeris M; Wiedwald U
    ACS Omega; 2023 Apr; 8(14):12955-12967. PubMed ID: 37065034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.