These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28640254)

  • 21. Arginine vasopressin regulated ASCT1 expression in astrocytes from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats.
    Yamagata K; Yamamoto M; Kawakami K; Ohara H; Nabika T
    Neuroscience; 2014 May; 267():277-85. PubMed ID: 24613720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection.
    Castiglioni L; Pignieri A; Fiaschè M; Giudici M; Crestani M; Mitro N; Abbate M; Zoja C; Rottoli D; Foray C; Fiordaliso F; Guerrini U; Tremoli E; Sironi L; Gelosa P
    J Hypertens; 2018 May; 36(5):1129-1146. PubMed ID: 29278547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fenofibrate lowers blood pressure in two genetic models of hypertension.
    Shatara RK; Quest DW; Wilson TW
    Can J Physiol Pharmacol; 2000 May; 78(5):367-71. PubMed ID: 10841431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of increased sensitivity to cerebral ischemia following carotid artery occlusion in stroke-prone spontaneously hypertensive rats: importance of genetic factors.
    Suno M; Kakihana M; Shibota M; Nagaoka A
    Stroke; 1981; 12(2):246-50. PubMed ID: 7233474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dietary salt on gene and protein expression in brain tissue of a model of sporadic small vessel disease.
    Bailey EL; McBride MW; McClure JD; Beattie W; Graham D; Dominiczak AF; Smith C; Wardlaw JM
    Clin Sci (Lond); 2018 Jun; 132(12):1315-1328. PubMed ID: 29632138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1) Deletion Has Protective Effects on Stroke in the Genetic Background of Stroke-Prone Spontaneously Hypertensive Rat.
    Liang YQ; Kakino A; Matsuzaka Y; Mashimo T; Isono M; Akamatsu T; Shimizu H; Tajima M; Kaneko T; Li L; Takeuchi F; Sawamura T; Kato N
    Stroke; 2020 Jun; 51(6):1835-1843. PubMed ID: 32397936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An interplay between UCP2 and ROS protects cells from high-salt-induced injury through autophagy stimulation.
    Forte M; Bianchi F; Cotugno M; Marchitti S; Stanzione R; Maglione V; Sciarretta S; Valenti V; Carnevale R; Versaci F; Frati G; Volpe M; Rubattu S
    Cell Death Dis; 2021 Oct; 12(10):919. PubMed ID: 34625529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of cytochrome p-450 in salt-sensitive stroke in stroke-prone spontaneously hypertensive rats.
    Ying CJ; Noguchi T; Aso H; Ikeda K; Yamori Y; Nara Y
    Hypertens Res; 2008 Sep; 31(9):1821-7. PubMed ID: 18971561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetylsalicylic acid provides cerebrovascular protection from oxidant damage in salt-loaded stroke-prone rats.
    Ishizuka T; Niwa A; Tabuchi M; Ooshima K; Higashino H
    Life Sci; 2008 Mar; 82(13-14):806-15. PubMed ID: 18313079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases.
    Pierelli G; Stanzione R; Forte M; Migliarino S; Perelli M; Volpe M; Rubattu S
    Oxid Med Cell Longev; 2017; 2017():7348372. PubMed ID: 29163755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats.
    Ishizuka T; Niwa A; Tabuchi M; Nagatani Y; Ooshima K; Higashino H
    J Hypertens; 2007 Apr; 25(4):861-70. PubMed ID: 17351380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats.
    Nakano M; Hirooka Y; Matsukawa R; Ito K; Sunagawa K
    Hypertens Res; 2013 Mar; 36(3):277-84. PubMed ID: 23096235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced Production of Hydrogen Sulfide and Sulfane Sulfur Due to Low Cystathionine β-Synthase Levels in Brain Astrocytes of Stroke-Prone Spontaneously Hypertensive Rats.
    Juman S; Nara Y; Yasui N; Negishi H; Okuda H; Takado N; Miki T
    Biol Pharm Bull; 2016; 39(12):1932-1938. PubMed ID: 27904035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats.
    Kim-Mitsuyama S; Yamamoto E; Tanaka T; Zhan Y; Izumi Y; Izumiya Y; Ioroi T; Wanibuchi H; Iwao H
    Stroke; 2005 May; 36(5):1083-8. PubMed ID: 15817892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Na+/K+-ATPase alpha isoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: effect of salt loading and lacidipine treatment.
    Quintas LE; Noël F; Wibo M
    Eur J Pharmacol; 2007 Jun; 565(1-3):151-7. PubMed ID: 17451677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation.
    Yamamoto E; Tamamaki N; Nakamura T; Kataoka K; Tokutomi Y; Dong YF; Fukuda M; Matsuba S; Ogawa H; Kim-Mitsuyama S
    Stroke; 2008 Nov; 39(11):3049-56. PubMed ID: 18688015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat.
    Koh-Tan HH; McBride MW; McClure JD; Beattie E; Young B; Dominiczak AF; Graham D
    Hypertension; 2013 Jul; 62(1):33-40. PubMed ID: 23648703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased genetic susceptibility to renal damage in the stroke-prone spontaneously hypertensive rat.
    Churchill PC; Churchill MC; Griffin KA; Picken M; Webb RC; Kurtz TW; Bidani AK
    Kidney Int; 2002 May; 61(5):1794-800. PubMed ID: 11967029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Levels of tight junction protein CLDND1 are regulated by microRNA-124 in the cerebellum of stroke-prone spontaneously hypertensive rats.
    Matsuoka H; Tamura A; Kinehara M; Shima A; Uda A; Tahara H; Michihara A
    Biochem Biophys Res Commun; 2018 Apr; 498(4):817-823. PubMed ID: 29530526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure.
    Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP
    J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.