These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1165 related articles for article (PubMed ID: 28640448)

  • 41. Myosin-18B Regulates Higher-Order Organization of the Cardiac Sarcomere through Thin Filament Cross-Linking and Thick Filament Dynamics.
    Latham SL; Weiß N; Schwanke K; Thiel C; Croucher DR; Zweigerdt R; Manstein DJ; Taft MH
    Cell Rep; 2020 Sep; 32(9):108090. PubMed ID: 32877672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion.
    González-Morales N; Holenka TK; Schöck F
    PLoS Genet; 2017 Jul; 13(7):e1006880. PubMed ID: 28732005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cytoskeleton of skeletal muscle: is it affected by exercise? A brief review.
    Waterman-Storer CM
    Med Sci Sports Exerc; 1991 Nov; 23(11):1240-9. PubMed ID: 1766338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Disorder profile of nebulin encodes a vernierlike position sensor for the sliding thin and thick filaments of the skeletal muscle sarcomere.
    Wu MC; Forbes JG; Wang K
    Phys Rev E; 2016 Jun; 93(6):062406. PubMed ID: 27415297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium transients regulate patterned actin assembly during myofibrillogenesis.
    Li H; Cook JD; Terry M; Spitzer NC; Ferrari MB
    Dev Dyn; 2004 Feb; 229(2):231-42. PubMed ID: 14745949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Build it up-Tear it down: protein quality control in the cardiac sarcomere.
    Willis MS; Schisler JC; Portbury AL; Patterson C
    Cardiovasc Res; 2009 Feb; 81(3):439-48. PubMed ID: 18974044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Myo18b is essential for sarcomere assembly in fast skeletal muscle.
    Berger J; Berger S; Li M; Currie PD
    Hum Mol Genet; 2017 Mar; 26(6):1146-1156. PubMed ID: 28104788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular mechanisms of muscle contraction: A historical perspective.
    Herzog W; Schappacher-Tilp G
    J Biomech; 2023 Jun; 155():111659. PubMed ID: 37290181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The three filament model of skeletal muscle stability and force production.
    Herzog W; Leonard T; Joumaa V; DuVall M; Panchangam A
    Mol Cell Biomech; 2012 Sep; 9(3):175-91. PubMed ID: 23285733
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle.
    Elkrief D; Matusovsky O; Cheng YS; Rassier DE
    J Muscle Res Cell Motil; 2023 Dec; 44(4):225-254. PubMed ID: 37805961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle Contraction.
    Sweeney HL; Hammers DW
    Cold Spring Harb Perspect Biol; 2018 Feb; 10(2):. PubMed ID: 29419405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles.
    Szikora S; Görög P; Mihály J
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases.
    Prill K; Dawson JF
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defining actin filament length in striated muscle: rulers and caps or dynamic stability?
    Littlefield R; Fowler VM
    Annu Rev Cell Dev Biol; 1998; 14():487-525. PubMed ID: 9891791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation.
    Vandenboom R
    Compr Physiol; 2016 Dec; 7(1):171-212. PubMed ID: 28135003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cofilin Loss in Drosophila Muscles Contributes to Muscle Weakness through Defective Sarcomerogenesis during Muscle Growth.
    Balakrishnan M; Yu SF; Chin SM; Soffar DB; Windner SE; Goode BL; Baylies MK
    Cell Rep; 2020 Jul; 32(3):107893. PubMed ID: 32697999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The myosin-interacting protein SMYD1 is essential for sarcomere organization.
    Just S; Meder B; Berger IM; Etard C; Trano N; Patzel E; Hassel D; Marquart S; Dahme T; Vogel B; Fishman MC; Katus HA; Strähle U; Rottbauer W
    J Cell Sci; 2011 Sep; 124(Pt 18):3127-36. PubMed ID: 21852424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component.
    Fukutani A; Herzog W
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31689920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers.
    Fenwick AJ; Leighton SR; Tanner BCW
    Biophys J; 2016 Nov; 111(9):2011-2023. PubMed ID: 27806282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numb and Numblike regulate sarcomere assembly and maintenance.
    Wang B; Yang M; Li S
    J Clin Invest; 2022 Feb; 132(3):. PubMed ID: 35104799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.