BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28640451)

  • 21. Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis.
    Brown TR; Krogh-Madsen T; Christini DJ
    Biomed Res Int; 2015; 2015():465714. PubMed ID: 26601107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac remodeling by fibrous tissue after infarction in rats.
    Sun Y; Zhang JQ; Zhang J; Lamparter S
    J Lab Clin Med; 2000 Apr; 135(4):316-23. PubMed ID: 10779047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis.
    Xie J; Zhang Q; Zhu T; Zhang Y; Liu B; Xu J; Zhao H
    Acta Biomater; 2014 Jun; 10(6):2463-72. PubMed ID: 24508540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.
    Jansen JA; van Veen TA; de Jong S; van der Nagel R; van Stuijvenberg L; Driessen H; Labzowski R; Oefner CM; Bosch AA; Nguyen TQ; Goldschmeding R; Vos MA; de Bakker JM; van Rijen HV
    Circ Arrhythm Electrophysiol; 2012 Apr; 5(2):380-90. PubMed ID: 22368123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View.
    Miragoli M; Glukhov AV
    Biomed Res Int; 2015; 2015():798768. PubMed ID: 26229964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload.
    Duhaney TA; Cui L; Rude MK; Lebrasseur NK; Ngoy S; De Silva DS; Siwik DA; Liao R; Sam F
    Hypertension; 2007 May; 49(5):1084-94. PubMed ID: 17353509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mechanisms of extracellular matrix remodeling in dilated cardiomyopathy].
    Pauschinger M; Chandrasekharan K; Li J; Schwimmbeck PL; Noutsias M; Schultheiss HP
    Herz; 2002 Nov; 27(7):677-82. PubMed ID: 12439639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetics in Reactive and Reparative Cardiac Fibrogenesis: The Promise of Epigenetic Therapy.
    Ghosh AK; Rai R; Flevaris P; Vaughan DE
    J Cell Physiol; 2017 Aug; 232(8):1941-1956. PubMed ID: 27883184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction.
    van Nieuwenhoven FA; Turner NA
    Vascul Pharmacol; 2013 Mar; 58(3):182-8. PubMed ID: 22885638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp.
    Brown TR; Krogh-Madsen T; Christini DJ
    Biophys J; 2016 Aug; 111(4):785-797. PubMed ID: 27558722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach.
    Trayanova NA; Boyle PM; Arevalo HJ; Zahid S
    Front Physiol; 2014; 5():435. PubMed ID: 25429272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress.
    Grand T; Salvarani N; Jousset F; Rohr S
    Cardiovasc Res; 2014 Dec; 104(3):489-500. PubMed ID: 25344366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the hyperpolarization-activated inward current If in arrhythmogenesis: a computer model study.
    Kuijpers NH; Keldermann RH; ten Eikelder HM; Arts T; Hilbers PA
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1499-511. PubMed ID: 16916084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligomeric proanthocyanidins protect myocardium by mitigating left ventricular remodeling in isoproterenol-induced postmyocardial infarction.
    Rathinavel A; Sankar J; Mohammed Sadullah SS; Niranjali Devaraj S
    Fundam Clin Pharmacol; 2018 Feb; 32(1):51-59. PubMed ID: 29059499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac Fibrosis: The Beneficial Effects of Exercise in Cardiac Fibrosis.
    Kyselovič J; Leddy JJ
    Adv Exp Med Biol; 2017; 999():257-268. PubMed ID: 29022267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and cellular aspects of re-entrant arrhythmias.
    Kleber AG; Fast V
    Basic Res Cardiol; 1997; 92 Suppl 1():111-9. PubMed ID: 9202851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomarkers of myocardial fibrosis.
    de Jong S; van Veen TA; de Bakker JM; Vos MA; van Rijen HV
    J Cardiovasc Pharmacol; 2011 May; 57(5):522-35. PubMed ID: 21423029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration.
    Talman V; Ruskoaho H
    Cell Tissue Res; 2016 Sep; 365(3):563-81. PubMed ID: 27324127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiac and renal fibrosis in chronic cardiorenal syndromes.
    Hundae A; McCullough PA
    Nephron Clin Pract; 2014; 127(1-4):106-12. PubMed ID: 25343831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical inflammatory mechanisms underlying arrhythmias.
    Vonderlin N; Siebermair J; Kaya E; Köhler M; Rassaf T; Wakili R
    Herz; 2019 Apr; 44(2):121-129. PubMed ID: 30729269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.