These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28640460)

  • 1. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi
    Singh S; Mun H; Lee S; Kim SW; Baik S
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28640460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess thermopower and the theory of thermopower waves.
    Abrahamson JT; Sempere B; Walsh MP; Forman JM; Sen F; Sen S; Mahajan SG; Paulus GL; Wang QH; Choi W; Strano MS
    ACS Nano; 2013 Aug; 7(8):6533-44. PubMed ID: 23889080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemical fuel composition on energy generation from thermopower waves.
    Yeo T; Hwang H; Jeong DC; Lee KY; Hong J; Song C; Choi W
    Nanotechnology; 2014 Nov; 25(44):445403. PubMed ID: 25319506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.
    Lee KY; Hwang H; Choi W
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15575-82. PubMed ID: 25133980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves.
    Yeo T; Hwang H; Cho Y; Shin D; Choi W
    Nanotechnology; 2015 Jul; 26(30):305402. PubMed ID: 26159116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO based thermopower wave sources.
    Walia S; Weber R; Balendhran S; Yao D; Abrahamson JT; Zhuiykov S; Bhaskaran M; Sriram S; Strano MS; Kalantar-zadeh K
    Chem Commun (Camb); 2012 Aug; 48(60):7462-4. PubMed ID: 22728449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point Defect Engineering: Co-Doping Synergy Realizing Superior Performance in n-Type Bi
    Zhu B; Wang W; Cui J; He J
    Small; 2021 Jul; 17(29):e2101328. PubMed ID: 34142440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves.
    Hwang H; Yeo T; Um JE; Lee KY; Kim HS; Han JH; Kim WJ; Choi W
    Nanoscale Res Lett; 2014; 9(1):536. PubMed ID: 25285059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermopower Wave-Driven Hybrid Supercapacitor Charging System.
    Shin D; Hwang H; Yeo T; Seo B; Choi W
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31042-31050. PubMed ID: 27797172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically driven carbon-nanotube-guided thermopower waves.
    Choi W; Hong S; Abrahamson JT; Han JH; Song C; Nair N; Baik S; Strano MS
    Nat Mater; 2010 May; 9(5):423-9. PubMed ID: 20208525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.
    Abrahamson JT; Choi W; Schonenbach NS; Park J; Han JH; Walsh MP; Kalantar-Zadeh K; Strano MS
    ACS Nano; 2011 Jan; 5(1):367-75. PubMed ID: 21182252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles.
    Lee KY; Hwang H; Shin D; Choi W
    Nanoscale; 2015 Oct; 7(40):17071-8. PubMed ID: 26419765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase Transformations of Cobalt Oxides in CoxOy-ZnO Multipod Nanostructures via Combustion from Thermopower Waves.
    Lee KY; Hwang H; Choi W
    Small; 2015 Sep; 11(36):4762-73. PubMed ID: 26136292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi₂Te₃ by Multifunctionality of Native Defects.
    Suh J; Yu KM; Fu D; Liu X; Yang F; Fan J; Smith DJ; Zhang YH; Furdyna JK; Dames C; Walukiewicz W; Wu J
    Adv Mater; 2015 Jun; 27(24):3681-6. PubMed ID: 25974062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning Optimum Temperature Range of Bi
    Zhang Q; Fang T; Liu F; Li A; Wu Y; Zhu T; Zhao X
    Chem Asian J; 2020 Sep; 15(18):2775-2792. PubMed ID: 32696486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.
    Yeo T; Hwang H; Shin D; Seo B; Choi W
    Nanotechnology; 2017 Feb; 28(6):065403. PubMed ID: 28052049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications.
    Zhao M; Zhang J; Gao N; Song P; Bosman M; Peng B; Sun B; Qiu CW; Xu QH; Bao Q; Loh KP
    Adv Mater; 2016 Apr; 28(16):3138-44. PubMed ID: 26923685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seebeck-driven transverse thermoelectric generation.
    Zhou W; Yamamoto K; Miura A; Iguchi R; Miura Y; Uchida KI; Sakuraba Y
    Nat Mater; 2021 Apr; 20(4):463-467. PubMed ID: 33462463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fascinating Electrical Transport Behavior of Topological Insulator Bi
    Hou ZL; Ma X; Zhang J; Li C; Wang Y; Cao M
    Small; 2022 Dec; 18(51):e2205624. PubMed ID: 36328711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Energy Generation via Reversible Chemical Doping on Carbon Nanotube Fibers.
    Liu AT; Kunai Y; Liu P; Kaplan A; Cottrill AL; Smith-Dell JS; Strano MS
    Adv Mater; 2016 Nov; 28(44):9752-9757. PubMed ID: 27717011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.