These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28640482)

  • 1. Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery.
    Prathap A; Sureshan KM
    Angew Chem Int Ed Engl; 2017 Aug; 56(32):9405-9409. PubMed ID: 28640482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sugar-Based Gelator for Marine Oil-Spill Recovery.
    Vibhute AM; Muvvala V; Sureshan KM
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7782-5. PubMed ID: 26821611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium Alginate Aerogel as a Carrier of Organogelators for Effective Oil Spill Solidification and Recovery.
    Xue Y; Shen Y; Chen X; Dong L; Li J; Guan Y; Li Y
    Langmuir; 2024 Jan; 40(2):1515-1523. PubMed ID: 38176104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Far Are We in Combating Marine Oil Spills by Using Phase-Selective Organogelators?
    Vibhute AM; Sureshan KM
    ChemSusChem; 2020 Oct; 13(20):5343-5360. PubMed ID: 32808717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Sorbent Materials based on Polymer Waste and their Compounds with Nanomaterials for Oil Spill Remediation.
    Torres CEI; Quezada TS; López I; de la Fuente IG; Rodríguez FEL; Kharissova OV; Kharisov BI
    Recent Pat Nanotechnol; 2020; 14(3):225-238. PubMed ID: 32031080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose aerogel composites as oil sorbents and their regeneration.
    Paulauskiene T; Uebe J; Ziogas M
    PeerJ; 2021; 9():e11795. PubMed ID: 34414028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alginate-oil gelator composite foam for effective oil spill treatment.
    Wang Y; Yu X; Fan W; Liu R; Liu Y
    Carbohydr Polym; 2022 Oct; 294():119755. PubMed ID: 35868745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Silica-Lignin Hybrid Filler in a Natural Rubber Foam Composite as a Green Oil Spill Absorbent.
    Mardiyati Y; Fauza AN; Rachman OA; Steven S; Santosa SP
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.
    Kollarigowda RH; Abraham S; Montemagno CD
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29812-29819. PubMed ID: 28796485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.
    Annunciado TR; Sydenstricker TH; Amico SC
    Mar Pollut Bull; 2005 Nov; 50(11):1340-6. PubMed ID: 15946707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organogel-Derived Covalent-Noncovalent Hybrid Polymers as Alkali Metal-Ion Scavengers for Partial Deionization of Water.
    Prathap A; Raju C; Sureshan KM
    ACS Appl Mater Interfaces; 2018 May; 10(17):15183-15188. PubMed ID: 29648776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation.
    Ge J; Ye YD; Yao HB; Zhu X; Wang X; Wu L; Wang JL; Ding H; Yong N; He LH; Yu SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3612-6. PubMed ID: 24591265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toluene diisocyanate based phase-selective supramolecular oil gelator for effective removal of oil spills from polluted water.
    Wang Y; Wang Y; Yan X; Wu S; Shao L; Liu Y; Guo Z
    Chemosphere; 2016 Jun; 153():485-93. PubMed ID: 27035386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.
    Gupta D; Sarker B; Thadikaran K; John V; Maldarelli C; John G
    Sci Adv; 2015 Jun; 1(5):e1400265. PubMed ID: 26601197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of bio-based materials for oil spill treatment.
    Doshi B; Sillanpää M; Kalliola S
    Water Res; 2018 May; 135():262-277. PubMed ID: 29477791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid.
    Sobhana L; Kesavan L; Gustafsson J; Fardim P
    Beilstein J Nanotechnol; 2019; 10():589-605. PubMed ID: 30873331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures.
    Fu Q; Ansari F; Zhou Q; Berglund LA
    ACS Nano; 2018 Mar; 12(3):2222-2230. PubMed ID: 29412639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials.
    Chetia M; Debnath S; Chowdhury S; Chatterjee S
    RSC Adv; 2020 Jan; 10(9):5220-5233. PubMed ID: 35498311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil spills abatement: factors affecting oil uptake by cellulosic fibers.
    Payne KC; Jackson CD; Aizpurua CE; Rojas OJ; Hubbe MA
    Environ Sci Technol; 2012 Jul; 46(14):7725-30. PubMed ID: 22724888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.
    Basu K; Nandi N; Mondal B; Dehsorkhi A; Hamley IW; Banerjee A
    Interface Focus; 2017 Dec; 7(6):20160128. PubMed ID: 29147552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.