These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28640586)

  • 1. Self-Supported Bi
    Wu M; Wang Y; Xu Y; Ming J; Zhou M; Xu R; Fu Q; Lei Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23647-23653. PubMed ID: 28640586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Charge Transport in 1D TiO
    Yu Z; Liu H; Zhu M; Li Y; Li W
    Small; 2021 Mar; 17(9):e1903378. PubMed ID: 31657147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional core-shell heterostructure of tungsten trioxide/bismuth molybdate/cobalt phosphate for enhanced photoelectrochemical water splitting.
    Sayed MS; Mohapatra D; Baynosa ML; Shim JJ
    J Colloid Interface Sci; 2021 Sep; 598():348-357. PubMed ID: 33910070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy.
    Zhang B; Zhang X; Xiao X; Shen Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing photoelectrochemical performance of the Bi
    Xie Z; Cui Z; Shi J; Lin C; Zhang K; Yuan G; Liu JM
    Nanoscale; 2020 Sep; 12(35):18446-18454. PubMed ID: 32941571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photogenerated Hole-Induced Chemical-Chemical Redox Cycling Strategy on a Direct
    Cao JT; Lv JL; Liao XJ; Ma SH; Liu YM
    Anal Chem; 2021 Jul; 93(28):9920-9926. PubMed ID: 34213883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting.
    Li M; Chen L; Zhou C; Jin C; Su Y; Zhang Y
    Nanoscale; 2019 Oct; 11(39):18071-18080. PubMed ID: 31506662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Decoupling Co-Catalyst from a Photoabsorbing Semiconductor as a New Strategy To Boost Photoelectrochemical Water Splitting.
    Lin H; Long X; An Y; Zhou D; Yang S
    Nano Lett; 2019 Jan; 19(1):455-460. PubMed ID: 30547599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound assisted deposition of highly stable self-assembled Bi
    Zargazi M; Entezari MH
    Ultrason Sonochem; 2020 Oct; 67():105145. PubMed ID: 32371348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency p-n junction oxide photoelectrodes for photoelectrochemical water splitting.
    Liu Z; Yan L
    Phys Chem Chem Phys; 2016 Nov; 18(45):31230-31237. PubMed ID: 27819107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of electron transport channels in type-I heterostructures of Bi
    Wang Q; Zhang Y; Li J; Liu N; Jiao Y; Jiao Z
    J Colloid Interface Sci; 2020 May; 567():145-153. PubMed ID: 32045736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS
    Meng L; Wang S; Cao F; Tian W; Long R; Li L
    Angew Chem Int Ed Engl; 2019 May; 58(20):6761-6765. PubMed ID: 30907040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Photo-Oxidative Performance of Bi
    Wu X; Hart JN; Wen X; Wang L; Du Y; Dou SX; Ng YH; Amal R; Scott J
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9342-9352. PubMed ID: 29473736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing NCuS Interface Chemical Bonds over SnS
    Zhang C; Wang M; Gao K; Zhu H; Ma J; Fang X; Wang X; Ding Y
    Small; 2023 Jan; 19(3):e2205706. PubMed ID: 36408820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of the nanowall photoelectrode for efficient solar water splitting.
    Zhou M; Bao J; Tao M; Zhu R; Zeng Y; Wei Z; Xie Y
    Chem Commun (Camb); 2012 Apr; 48(28):3439-41. PubMed ID: 22362305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.