These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Significant influence of coligands toward varying coordination modes of 2,2'-bipyridine-3,3'-diol in ruthenium complexes. Ghosh P; Mondal P; Ray R; Das A; Bag S; Mobin SM; Lahiri GK Inorg Chem; 2014 Jun; 53(12):6094-106. PubMed ID: 24853947 [TBL] [Abstract][Full Text] [Related]
24. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems. Meylemans HA; Lei CF; Damrauer NH Inorg Chem; 2008 May; 47(10):4060-76. PubMed ID: 18407628 [TBL] [Abstract][Full Text] [Related]
25. Distance dependence of intrahelix Ru(II)* to Os(II) polypyridyl excited-state energy transfer in oligoproline assemblies. Brennaman MK; Fleming CN; Slate CA; Serron SA; Bettis SE; Erickson BW; Papanikolas JM; Meyer TJ J Phys Chem B; 2013 May; 117(21):6352-63. PubMed ID: 23634850 [TBL] [Abstract][Full Text] [Related]
26. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes? van Rixel VH; Busemann A; Göttle AJ; Bonnet S J Inorg Biochem; 2015 Sep; 150():174-81. PubMed ID: 26187140 [TBL] [Abstract][Full Text] [Related]
28. Ruthenium(II) and osmium(II) complexes bearing bipyridine and the N-heterocyclic carbene-based C^N^C pincer ligand: an experimental and density functional theory study. Chung LH; Cho KS; England J; Chan SC; Wieghardt K; Wong CY Inorg Chem; 2013 Sep; 52(17):9885-96. PubMed ID: 23952294 [TBL] [Abstract][Full Text] [Related]
29. Physical, photophysical and structural properties of ruthenium(II) complexes containing a tetradentate bipyridine ligand. Kirgan RA; Witek PA; Moore C; Rillema DP Dalton Trans; 2008 Jun; (24):3189-98. PubMed ID: 18688417 [TBL] [Abstract][Full Text] [Related]
30. Selective generation of formamides through photocatalytic CO2 reduction catalyzed by ruthenium carbonyl compounds. Kobayashi K; Kikuchi T; Kitagawa S; Tanaka K Angew Chem Int Ed Engl; 2014 Oct; 53(44):11813-7. PubMed ID: 25199795 [TBL] [Abstract][Full Text] [Related]
31. Mixed-ligand complexes of ruthenium(II) containing new photoactive or electroactive ligands: synthesis, spectral characterization and DNA interactions. Ghosh T; Maiya BG; Samanta A; Shukla AD; Jose DA; Kumar DK; Das A J Biol Inorg Chem; 2005 Aug; 10(5):496-508. PubMed ID: 15981005 [TBL] [Abstract][Full Text] [Related]
32. Activating a Low Overpotential CO2 Reduction Mechanism by a Strategic Ligand Modification on a Ruthenium Polypyridyl Catalyst. Johnson BA; Maji S; Agarwala H; White TA; Mijangos E; Ott S Angew Chem Int Ed Engl; 2016 Jan; 55(5):1825-9. PubMed ID: 26671836 [TBL] [Abstract][Full Text] [Related]
33. Synthesis, structural characterization, and photophysical, electrochemical, intercomponent energy-transfer, and anion-sensing studies of imidazole 4,5-bis(benzimidazole)-bridged Os(II)Os(II) and Ru(II)Os(II) bipyridine complexes. Saha D; Das S; Maity D; Dutta S; Baitalik S Inorg Chem; 2011 Jan; 50(1):46-61. PubMed ID: 21114281 [TBL] [Abstract][Full Text] [Related]
34. The role of monomers and dimers in the reduction of ruthenium(II) complexes of redox-active tetraazatetrapyridopentacene ligand. Tacconi NR; Chitakunye R; Macdonnell FM; Lezna RO J Phys Chem A; 2008 Jan; 112(3):497-507. PubMed ID: 18171035 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of metal-metal coupling at a considerable distance by using 4-pyridinealdazine as a bridging ligand in polynuclear complexes of rhenium and ruthenium. Cattaneo M; Fagalde F; Katz NE; Leiva AM; Schmehl R Inorg Chem; 2006 Jan; 45(1):127-36. PubMed ID: 16390048 [TBL] [Abstract][Full Text] [Related]
36. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies. Soler M; McCusker JK J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336 [TBL] [Abstract][Full Text] [Related]
37. trans-(Cl)-[Ru(5,5'-diamide-2,2'-bipyridine)(CO)2 Cl2 ]: Synthesis, Structure, and Photocatalytic CO2 Reduction Activity. Kuramochi Y; Fukaya K; Yoshida M; Ishida H Chemistry; 2015 Jul; 21(28):10049-60. PubMed ID: 26014896 [TBL] [Abstract][Full Text] [Related]
38. Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2'-bipyridine (bpy) or 2-phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects. De P; Maji S; Chowdhury AD; Mobin SM; Mondal TK; Paretzki A; Lahiri GK Dalton Trans; 2011 Dec; 40(46):12527-39. PubMed ID: 21986798 [TBL] [Abstract][Full Text] [Related]
39. Carbon monoxide release catalysed by electron transfer: electrochemical and spectroscopic investigations of [Re(bpy-R)(CO)4](OTf) complexes relevant to CO2 reduction. Grice KA; Gu NX; Sampson MD; Kubiak CP Dalton Trans; 2013 Jun; 42(23):8498-503. PubMed ID: 23629511 [TBL] [Abstract][Full Text] [Related]
40. Changing the role of 2,2'-bipyridine from secondary ligand to protagonist in [Ru(bpy)2(N-N)]2+ complexes: low-energy, red emission from a ruthenium(II)-to-2,2'-bipyridine 3MLCT state. Nag S; Ferreira JG; Chenneberg L; Ducharme PD; Hanan GS; La Ganga G; Serroni S; Campagna S Inorg Chem; 2011 Jan; 50(1):7-9. PubMed ID: 21138317 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]