BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28640671)

  • 1. Regulation of a muralytic enzyme-encoding gene by two non-coding RNAs.
    St-Onge RJ; Elliot MA
    RNA Biol; 2017 Nov; 14(11):1592-1605. PubMed ID: 28640671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces.
    St-Onge RJ; Haiser HJ; Yousef MR; Sherwood E; Tschowri N; Al-Bassam M; Elliot MA
    Mol Microbiol; 2015 May; 96(4):779-95. PubMed ID: 25682701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region.
    Vockenhuber MP; Suess B
    Microbiology (Reading); 2012 Feb; 158(Pt 2):424-435. PubMed ID: 22075028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from
    Liu L; Luo D; Zhang Y; Liu D; Yin K; Tang Q; Chou S-H; He J
    Microbiol Spectr; 2024 Jul; 12(7):e0045024. PubMed ID: 38819160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory RNA in Mycobacterium tuberculosis, back to basics.
    Schwenk S; Arnvig KB
    Pathog Dis; 2018 Jun; 76(4):. PubMed ID: 29796669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability.
    Pursley BR; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor.
    Rickman L; Scott C; Hunt DM; Hutchinson T; Menéndez MC; Whalan R; Hinds J; Colston MJ; Green J; Buxton RS
    Mol Microbiol; 2005 Jun; 56(5):1274-86. PubMed ID: 15882420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational Analysis of sRNA-mRNA Base Pairing by Electrophoretic Mobility Shift Assay.
    Lillebæk EMS; Kallipolitis BH
    Methods Mol Biol; 2018; 1737():165-176. PubMed ID: 29484593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small non-coding RNAs in streptomycetes.
    Heueis N; Vockenhuber MP; Suess B
    RNA Biol; 2014; 11(5):464-9. PubMed ID: 24667326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.
    Bordeleau E; Purcell EB; Lafontaine DA; Fortier LC; Tamayo R; Burrus V
    J Bacteriol; 2015 Mar; 197(5):819-32. PubMed ID: 25512308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A c-di-AMP riboswitch controlling
    Wang X; Cai X; Ma H; Yin W; Zhu L; Li X; Lim HM; Chou SH; He J
    Commun Biol; 2019; 2():151. PubMed ID: 31044176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA.
    Corcoran CP; Podkaminski D; Papenfort K; Urban JH; Hinton JC; Vogel J
    Mol Microbiol; 2012 May; 84(3):428-45. PubMed ID: 22458297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riboswitches in eubacteria sense the second messenger c-di-AMP.
    Nelson JW; Sudarsan N; Furukawa K; Weinberg Z; Wang JX; Breaker RR
    Nat Chem Biol; 2013 Dec; 9(12):834-9. PubMed ID: 24141192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of metE as a second target of the sRNA scr5239 in Streptomyces coelicolor.
    Vockenhuber MP; Heueis N; Suess B
    PLoS One; 2015; 10(3):e0120147. PubMed ID: 25785836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A riboswitch-regulated antisense RNA in Listeria monocytogenes.
    Mellin JR; Tiensuu T; Bécavin C; Gouin E; Johansson J; Cossart P
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13132-7. PubMed ID: 23878253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into recognition of c-di-AMP by the ydaO riboswitch.
    Gao A; Serganov A
    Nat Chem Biol; 2014 Sep; 10(9):787-92. PubMed ID: 25086507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of ligand binding by a c-di-GMP riboswitch.
    Smith KD; Lipchock SV; Ames TD; Wang J; Breaker RR; Strobel SA
    Nat Struct Mol Biol; 2009 Dec; 16(12):1218-23. PubMed ID: 19898477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The unmasking of 'junk' RNA reveals novel sRNAs: from processed RNA fragments to marooned riboswitches.
    De Lay NR; Garsin DA
    Curr Opin Microbiol; 2016 Apr; 30():16-21. PubMed ID: 26771674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected versatility in bacterial riboswitches.
    Mellin JR; Cossart P
    Trends Genet; 2015 Mar; 31(3):150-6. PubMed ID: 25708284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.