These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 28640851)
1. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch. Hanke CA; Gohlke H PLoS One; 2017; 12(6):e0179271. PubMed ID: 28640851 [TBL] [Abstract][Full Text] [Related]
2. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site. Hanke CA; Gohlke H J Chem Inf Model; 2017 Nov; 57(11):2822-2832. PubMed ID: 29019403 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Buck J; Noeske J; Wöhnert J; Schwalbe H Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045 [TBL] [Abstract][Full Text] [Related]
4. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531 [TBL] [Abstract][Full Text] [Related]
5. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements. Ding E; Chaudhury SN; Prajapati JD; Onuchic JN; Sanbonmatsu KY RNA; 2024 Jul; 30(8):992-1010. PubMed ID: 38777381 [TBL] [Abstract][Full Text] [Related]
6. Force field dependence of riboswitch dynamics. Hanke CA; Gohlke H Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465 [TBL] [Abstract][Full Text] [Related]
7. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain. Buck J; Wacker A; Warkentin E; Wöhnert J; Wirmer-Bartoschek J; Schwalbe H Nucleic Acids Res; 2011 Dec; 39(22):9768-78. PubMed ID: 21890900 [TBL] [Abstract][Full Text] [Related]
8. Sequence-dependent folding landscapes of adenine riboswitch aptamers. Lin JC; Hyeon C; Thirumalai D Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448 [TBL] [Abstract][Full Text] [Related]
9. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930 [TBL] [Abstract][Full Text] [Related]
10. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. Gong Z; Zhao Y; Chen C; Xiao Y J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158 [TBL] [Abstract][Full Text] [Related]
11. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980 [TBL] [Abstract][Full Text] [Related]
12. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. Di Palma F; Colizzi F; Bussi G RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding. Li C; Zhao X; Xie P; Hu J; Bi H J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590 [TBL] [Abstract][Full Text] [Related]
14. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. Allnér O; Nilsson L; Villa A RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711 [TBL] [Abstract][Full Text] [Related]
15. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. Hu G; Ma A; Wang J J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904 [TBL] [Abstract][Full Text] [Related]
16. Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch. Priyakumar UD; MacKerell AD J Mol Biol; 2010 Mar; 396(5):1422-38. PubMed ID: 20026131 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Bao L; Wang J; Xiao Y Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773 [TBL] [Abstract][Full Text] [Related]
19. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain. Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Gilbert SD; Stoddard CD; Wise SJ; Batey RT J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]