These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 28640973)
1. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. Fu W; Chen D; Pan Q; Li F; Zhao Z; Ge X; Li Z Plant Biotechnol J; 2018 Feb; 16(2):367-380. PubMed ID: 28640973 [TBL] [Abstract][Full Text] [Related]
2. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. Ye S; Hua S; Ma T; Ma X; Chen Y; Wu L; Zhao L; Yi B; Ma C; Tu J; Shen J; Fu T; Wen J J Exp Bot; 2022 Nov; 73(19):6630-6645. PubMed ID: 35857343 [TBL] [Abstract][Full Text] [Related]
3. Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner. Byzova M; Verduyn C; De Brouwer D; De Block M Planta; 2004 Jan; 218(3):379-87. PubMed ID: 14534787 [TBL] [Abstract][Full Text] [Related]
4. Identification of Flower-Specific Promoters through Comparative Transcriptome Analysis in Li Y; Dong C; Hu M; Bai Z; Tong C; Zuo R; Liu Y; Cheng X; Cheng M; Huang J; Liu S Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779216 [No Abstract] [Full Text] [Related]
5. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. Xue L; Wang J; Zhao J; Zheng Y; Wang HF; Wu X; Xian C; Lei JJ; Zhong CF; Zhang YT BMC Plant Biol; 2019 Oct; 19(1):423. PubMed ID: 31610785 [TBL] [Abstract][Full Text] [Related]
6. Zhong X; Zhou Q; Cui N; Cai D; Tang G Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30965683 [TBL] [Abstract][Full Text] [Related]
7. Unraveling the mechanism of flower color variation in Cui C; Zhang K; Chai L; Zheng B; Zhang J; Jiang J; Tan C; Li H; Chen D; Jiang L Front Plant Sci; 2024; 15():1419508. PubMed ID: 38933465 [No Abstract] [Full Text] [Related]
8. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Chatterjee M; Sharma P; Khurana JP Plant Physiol; 2006 May; 141(1):61-74. PubMed ID: 16531484 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus. Jia L; Wang J; Wang R; Duan M; Qiao C; Chen X; Ma G; Zhou X; Zhu M; Jing F; Zhang S; Qu C; Li J Planta; 2021 Jan; 253(1):8. PubMed ID: 33387047 [TBL] [Abstract][Full Text] [Related]
10. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus. Ying L; Chen H; Cai W Plant Physiol Biochem; 2014 Jun; 79():77-87. PubMed ID: 24690671 [TBL] [Abstract][Full Text] [Related]
11. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. Fu H; Chao H; Zhao X; Wang H; Li H; Zhao W; Sun T; Li M; Huang J Plant Mol Biol; 2022 Sep; 110(1-2):53-68. PubMed ID: 35723867 [TBL] [Abstract][Full Text] [Related]
12. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Kim J; Lee WJ; Vu TT; Jeong CY; Hong SW; Lee H Plant Cell Rep; 2017 Aug; 36(8):1215-1224. PubMed ID: 28444442 [TBL] [Abstract][Full Text] [Related]
13. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. Liu Y; Ye S; Yuan G; Ma X; Heng S; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Plant J; 2020 Nov; 104(4):932-949. PubMed ID: 32808386 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Brassica napus Flavonol Synthase Involved in Flavonol Biosynthesis in Brassica napus L. Vu TT; Jeong CY; Nguyen HN; Lee D; Lee SA; Kim JH; Hong SW; Lee H J Agric Food Chem; 2015 Sep; 63(35):7819-29. PubMed ID: 26264830 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana. Duan S; Wang J; Gao C; Jin C; Li D; Peng D; Du G; Li Y; Chen M Plant Sci; 2018 Mar; 268():47-53. PubMed ID: 29362083 [TBL] [Abstract][Full Text] [Related]
16. Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea L. var. aurantiaca). Berman J; Sheng Y; Gómez Gómez L; Veiga T; Ni X; Farré G; Capell T; Guitián J; Guitián P; Sandmann G; Christou P; Zhu C PLoS One; 2016; 11(9):e0162410. PubMed ID: 27589396 [TBL] [Abstract][Full Text] [Related]
17. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L. Li H; Zhu L; Yuan G; Heng S; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Mol Genet Genomics; 2016 Aug; 291(4):1523-34. PubMed ID: 27003438 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Nakatsuka T; Haruta KS; Pitaksutheepong C; Abe Y; Kakizaki Y; Yamamoto K; Shimada N; Yamamura S; Nishihara M Plant Cell Physiol; 2008 Dec; 49(12):1818-29. PubMed ID: 18974195 [TBL] [Abstract][Full Text] [Related]
19. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]