BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28641189)

  • 1. Qualitative and quantitative simulation of androgen receptor antagonists: A case study of polybrominated diphenyl ethers.
    Wu Y; Shi W; Xia P; Zhang X; Yu H
    Sci Total Environ; 2017 Dec; 603-604():495-501. PubMed ID: 28641189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-androgen activity of polybrominated diphenyl ethers determined by comparative molecular similarity indices and molecular docking.
    Yang W; Mu Y; Giesy JP; Zhang A; Yu H
    Chemosphere; 2009 May; 75(9):1159-64. PubMed ID: 19324393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β.
    Li X; Ye L; Wang X; Wang X; Liu H; Zhu Y; Yu H
    Toxicol Appl Pharmacol; 2012 Dec; 265(3):300-7. PubMed ID: 22982074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive binding analysis of polybrominated diphenyl ethers and aryl hydrocarbon receptor via an integrated molecular modeling approach.
    Xiao H; Mei N; Chi Q; Wang X
    Chemosphere; 2021 Jan; 262():128356. PubMed ID: 33182092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Ah receptor binding affinities of polybrominated diphenyl ethers via in silico molecular docking and 3D-QSAR.
    Li X; Wang X; Shi W; Liu H; Yu H
    SAR QSAR Environ Res; 2013 Jan; 24(1):75-87. PubMed ID: 23121134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular docking and comparative molecular similarity indices analysis of estrogenicity of polybrominated diphenyl ethers and their analogues.
    Yang W; Liu X; Liu H; Wu Y; Giesy JP; Yu H
    Environ Toxicol Chem; 2010 Mar; 29(3):660-8. PubMed ID: 20821492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the binding characteristics of hydroxylated polybrominated diphenyl ethers and thyroid transporters using the multispectral technique and computational simulation.
    Wei Y; Yi Z; Xu J; Yang W; Yang L; Liu H
    J Biomol Struct Dyn; 2019 Apr; 37(6):1402-1413. PubMed ID: 29620440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of HO-/MeO-PBDEs on androgen receptor: in vitro investigation and helix 12-involved MD simulation.
    Wang X; Yang H; Hu X; Zhang X; Zhang Q; Jiang H; Shi W; Yu H
    Environ Sci Technol; 2013 Oct; 47(20):11802-9. PubMed ID: 24044724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the microscopic binding mechanism of hydroxylated and sulfated polybrominated diphenyl ethers with transthyretin by molecular docking, molecular dynamics simulations and binding free energy calculations.
    Cao H; Sun Y; Wang L; Zhao C; Fu J; Zhang A
    Mol Biosyst; 2017 Mar; 13(4):736-749. PubMed ID: 28217795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid.
    Wu Y; Doering JA; Ma Z; Tang S; Liu H; Zhang X; Wang X; Yu H
    Chemosphere; 2016 Sep; 158():72-9. PubMed ID: 27258897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved 3D-QSAR analyzes for the predictive toxicology of polybrominated diphenyl ethers with CoMFA/CoMSIA and DFT.
    Gu C; Ju X; Jiang X; Yu K; Yang S; Sun C
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1470-9. PubMed ID: 20006384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular docking and molecular dynamics studies on the interactions of hydroxylated polybrominated diphenyl ethers to estrogen receptor alpha.
    Lu Q; Cai Z; Fu J; Luo S; Liu C; Li X; Zhao D
    Ecotoxicol Environ Saf; 2014 Mar; 101():83-9. PubMed ID: 24507131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico investigations of anti-androgen activity of polychlorinated biphenyls.
    Li X; Ye L; Wang X; Shi W; Liu H; Qian X; Zhu Y; Yu H
    Chemosphere; 2013 Aug; 92(7):795-802. PubMed ID: 23664479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationship study on the binding of PBDEs with thyroxine transport proteins.
    Yang W; Shen S; Mu L; Yu H
    Environ Toxicol Chem; 2011 Nov; 30(11):2431-9. PubMed ID: 21842493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing quantitative structure activity relationships to predict specific toxic endpoints for polybrominated diphenyl ethers in mammalian cells.
    Rawat S; Bruce ED
    SAR QSAR Environ Res; 2014; 25(7):527-49. PubMed ID: 24738916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Thyroid Hormone Disruptors among HO-PBDEs: In Vitro Investigations and Coregulator Involved Simulations.
    Chen Q; Wang X; Shi W; Yu H; Zhang X; Giesy JP
    Environ Sci Technol; 2016 Nov; 50(22):12429-12438. PubMed ID: 27737548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists.
    Wang Y; Han R; Zhang H; Liu H; Li J; Liu H; Gramatica P
    Biomed Res Int; 2017; 2017():3572394. PubMed ID: 28293633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the binding features of polybrominated diphenyl ethers as estrogen receptor antagonists: docking studies.
    Yang WH; Wang ZY; Liu HL; Yu HX
    SAR QSAR Environ Res; 2010 Apr; 21(3-4):351-67. PubMed ID: 20544555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationship models for prediction of the toxicity of polybrominated diphenyl ether congeners.
    Wang Y; Liu H; Zhao C; Liu H; Cai Z; Jiang G
    Environ Sci Technol; 2005 Jul; 39(13):4961-6. PubMed ID: 16053097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y
    Zhou S; Fang D; Tan S; Lin W; Wu W; Zheng K
    J Biomol Struct Dyn; 2017 Oct; 35(13):2938-2965. PubMed ID: 27634290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.